【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣6)2+|a+b|=0,請(qǐng)回答問題
(1)請(qǐng)直接寫出a、b、c的值.a= ,b= ,c=
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在A、B之間運(yùn)動(dòng)時(shí),請(qǐng)化簡(jiǎn)式子:|x+1|﹣|x﹣1|﹣2|x+5|(請(qǐng)寫出化簡(jiǎn)過程)
(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒n(n>0)個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2n個(gè)單位長(zhǎng)度和5n個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)經(jīng)過t秒鐘過后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問:BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
【答案】(1)﹣1,1,6;(2)-10;(3)BC﹣AB的值不變,BC﹣AB=4
【解析】試題分析:(1)根據(jù)最小的正整數(shù)是1,推出 再利用非負(fù)數(shù)的性質(zhì)求出即可.
(2)首先確定的范圍,再化簡(jiǎn)絕對(duì)值即可.
(3)的值不變.根據(jù)題意用 表示出即可解決問題.
試題解析:(1)∵b是最小的正整數(shù),
∴b=1,
∴c=6,a=1,b=1,
故答案為1,1,6.
(2)由題意1<x<1,
∴|x+1||x1|2|x+5|=x+1+x12x10=10.
(3)不變,由題意BC=5+5nt2nt=5+3nt,AB=nt+1+2nt=1+3nt,
∴BCAB=(5+3nt)(1+3nt)=4,
∴BCAB的值不變,BCAB=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0), B(0,﹣1)和C(4,5)三點(diǎn).
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為D,求點(diǎn)D的坐標(biāo);
(3)在同一坐標(biāo)系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)計(jì)算:﹣32÷(﹣3)2+3×(﹣2)+|﹣4|
(2)計(jì)算:
(3)化簡(jiǎn):(5a2+2a﹣1)﹣4[3﹣2(4a+a2)]
(4)化簡(jiǎn):3x2﹣[7x﹣(4x﹣3)﹣2x2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)試判斷四邊形AECF的形狀;
(2)若AE=BE,∠BAC=90°,求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一頂點(diǎn)重合的兩個(gè)大小完全相同的邊長(zhǎng)為3的正方形ABCD和正方形AB′C′D′,如圖所示,∠DAD′=45°,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是( )
A. 6 B. 6 C. 3 D. 3+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張先生準(zhǔn)備在沙坪壩購(gòu)買一套小戶型商品房,他去某樓盤了解情況得知,該戶型商品房的單價(jià)是12000元/m2,面積如圖所示(單位:米,臥室的寬為a米,衛(wèi)生間的寬為x米),
(1) 用含a和x的式子表示該戶型的面積
(2) 售房部為張先生提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價(jià)是12 000元/m2,其中廚房只算的面積;
方案二:整套房按原銷售總金額的9折出售,
若張先生購(gòu)買的戶型a=3,且分別用兩種方案購(gòu)房金額相等,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過點(diǎn)作交于,連接.
(1)求證:四邊形為菱形;
(2)當(dāng)點(diǎn)在邊上移動(dòng)時(shí),折痕的端點(diǎn),也隨之移動(dòng).
①當(dāng)點(diǎn)與點(diǎn)重合時(shí)(如圖),求菱形的邊長(zhǎng);
②若限定,分別在邊,上移動(dòng),求出點(diǎn)在邊上移動(dòng)的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對(duì)稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014四川資陽(yáng))如圖①,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點(diǎn)C,且AB=BC,P是線段BC上異于兩端點(diǎn)的一點(diǎn),過點(diǎn)P的直線分別交l2,l1于點(diǎn)D,E(點(diǎn)A,E位于點(diǎn)B的兩側(cè),滿足BP=BE,連接AP,CE.
(1)求證:△ABP≌△CBE.
(2)連接AD、BD,BD與AP相交于點(diǎn)F,如圖②.
①當(dāng)時(shí),求證:AP⊥BD;
②當(dāng)(n>1)時(shí),設(shè)△PAD的面積為S1,△PCE的面積為S2,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com