【題目】我們定義:兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
例如:某三角形三邊長分別是2,4,,因為,所以這個三角形是奇異三角形.
(1)根據(jù)定義:“等邊三角形是奇異三角形”這個命題是______命題(填“真”或“假命題”);
(2)在中,,,,,且,若是奇異三角形,求;
(3)如圖,以為斜邊分別在的兩側(cè)作直角三角形,且,若四邊形內(nèi)存在點,使得,.
①求證:是奇異三角形;
②當是直角三角形時,求的度數(shù).
【答案】(1)真;(2);(3)①證明見解析;②或.
【解析】
(1)設等邊三角形的邊長為a,則a2+a2=2a2,即可得出結(jié)論;
(2)由勾股定理得出a2+b2=c2①,由Rt△ABC是奇異三角形,且b>a,得出a2+c2=2b2②,由①②得出b=a,c=a,即可得出結(jié)論;
(3)①由勾股定理得出AC2+BC2=AB2,AD2+BD2=AB2,由已知得出2AD2=AB2,AC2+CE2=2AE2,即可得出△ACE是奇異三角形;
②由△ACE是奇異三角形,得出AC2+CE2=2AE2,分兩種情況,由直角三角形和奇異三角形的性質(zhì)即可得出答案.
(1)解:“等邊三角形是奇異三角形”這個命題是真命題,理由如下:
設等邊三角形的一邊為,則,
∴符合奇異三角形”的定義.
(2)解:∵,則①,
∵是奇異三角形,且,
∴②,
由①②得:,,
∴.
(3)①證明:∵,
∴,,
∵,
∴,
∵,,
∴,
∴是奇異三角形.
②由①可得是奇異三角形,
∴,
當是直角三角形時,
由(2)得:或,
當時,,
即,
∵,
∴,
∵,,
∴,
∴.
當時,,
即,
∵,
∴°,
∵,,
∴,
∴,
∴或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點, 與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標為(3,0))。點P是拋物線上一個動點,且在直線BC的上方.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形,那么是否存在點P,使四邊形為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,使△BPC的面積最大,求出點P的坐標和△BPC的面積最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當|PA﹣PB|最大時,點P的坐標為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線與△ABC的外接圓相交于點D.
(1)若∠BAC=70°,求∠CBD的度數(shù);
(2)求證:DE=DB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學為了了解七年級學生對這一倡議的落實情況,學校安排政教處在七年級學生中隨機抽取了部分學生,并針對學生“是否隨手丟垃圾”這一情況進行了問卷調(diào)查,統(tǒng)計結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項.要求每位被調(diào)查的學生必須從以上三項中選一項且只能選一項.現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負不完整的統(tǒng)計圖.
請你根據(jù)以上信息,解答下列問題:
(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)所抽取學生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級共有1500名學生,請你估計該年級學生中“經(jīng)常隨手丟垃圾”的學生約有多少人?談談你的看法?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學課上,老師提出一個問題“用直尺和圓規(guī)作一個矩形”.
小華的做法如下:
如圖1,任取一點O,過點O作直線l1,l2;如圖2,以O為圓心,任意長為半徑作圓,與直線l1,l2分別相交于點A、C,B、D;如圖3,連接AB、BC、CD、DA四邊形ABCD即為所求作的矩形.
老師說:“小華的作法正確”.
請回答:小華的作圖依據(jù)是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com