在平面直角坐標(biāo)系中,已知點P是反比例函數(shù)圖象上一個動點,以P為圓心的圓始終與y軸相切,設(shè)切點為A.

(1)如圖1,⊙P運動到與x軸相切,設(shè)切點為K,試判斷四邊形OKPA的形狀,并說明理由;
(2)如圖2,⊙P運動到與x軸相交,設(shè)交點為B、C.當(dāng)四邊形ABCP是菱形時,求出點A、B、C的坐標(biāo).
【答案】分析:(1)四邊形OKPA是正方形.當(dāng)⊙P分別與兩坐標(biāo)軸相切時,PA⊥y軸,PK⊥x軸,x軸⊥y軸,且PA=PK,可判斷結(jié)論;
(2)連接PB,設(shè)點P(x,),過點P作PG⊥BC于G,則半徑PB=PC,由菱形的性質(zhì)得PC=BC,可知△PBC為等邊三角形,在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=,利用sin∠PBG=,列方程求x即可.
解答:(1)四邊形OKPA是正方形.
證明:∵⊙P分別與兩坐標(biāo)軸相切,
∴PA⊥OA,PK⊥OK,
∴∠PAO=∠OKP=90°,
又∵∠AOK=90°,
∴∠PAO=∠OKP=∠AOK=90°,
∴四邊形OKPA是矩形,
又∵OA=OK,
∴四邊形OKPA是正方形;

 (2)解:連接PB,設(shè)點P的橫坐標(biāo)為x,則其縱坐標(biāo)為
過點P作PG⊥BC于G,
∵四邊形ABCP為菱形,
∴BC=PA=PB=PC(半徑),
∴△PBC為等邊三角形,
在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=,
sin∠PBG=,即=
解得:x=±2(負(fù)值舍去),
∴PG=,PA=BC=2,
易知四邊形OGPA是矩形,PA=OG=2,BG=CG=1,
∴OB=OG-BG=1,OC=OG+GC=3,
∴A(0,),B(1,0)C(3,0).
點評:本題考查了反比例函數(shù)的綜合運用以及菱形、圓的性質(zhì)和正方形的判定等知識,利用數(shù)形結(jié)合解題得出P點橫坐標(biāo)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案