【題目】如圖,在等腰△ABC中,CH是底邊上的高線,點(diǎn)P是線段CH上不與端點(diǎn)重合的任意一點(diǎn),連接AP交BC于點(diǎn)E,連接BP交AC于點(diǎn)F.
(1)證明:∠CAE=∠CBF;
(2)證明:AE=BF;
(3)以線段AE,BF和AB為邊構(gòu)成一個(gè)新的三角形ABG(點(diǎn)E與點(diǎn)F重合于點(diǎn)G),記△ABC和△ABG的面積分別為S△ABC和S△ABG , 如果存在點(diǎn)P,能使得S△ABC=S△ABG , 求∠ACB的取值范圍.
【答案】
(1)證明:∵△ABC是等腰三角形,CH是底邊上的高線,
∴AC=BC,∠ACP=∠BCP.
又∵CP=CP,
∴△ACP≌△BCP.
∴∠CAP=∠CBP,即∠CAE=∠CBF.
(2)證明:∵在△ACE與△BCF中,
,
∴△ACE≌△BCF(ASA).
∴AE=BF.
(3)解:∵由(2)知△ABG是以AB為底邊的等腰三角形,
∴S△ABC=S△ABG.
∴AE=AC.
①當(dāng)∠ACB為直角或鈍角時(shí),在△ACE中,不論點(diǎn)P在CH何處,均有AE>AC,所以結(jié)論不成立;
②當(dāng)∠ACB為銳角時(shí),∠CAH=90°﹣ ∠ACB,而∠CAE<∠CAH,要使AE=AC,只需使∠ACB=∠CEA,
此時(shí),∠CAE=180°﹣2∠ACB,
只須180°﹣2∠ACB<90°﹣ ∠ACB,
解得:60°<∠ACB<90°.
【解析】(1)證得△ACP≌△BCP即可;(2)加上(1)的結(jié)論,證得△ACE≌△BCF即可;(3)假設(shè)存在點(diǎn)P,能使得S△ABC=S△ABG , 由(2)得到的AE=BF,則新三角形ABG也為等腰三角形,根據(jù)底邊都為AB,面積相等,得到高相等,所以AC=AE,即三角形ACE為等腰三角形,則底角∠ACB為銳角,即可得到∠ACB的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的性質(zhì),需要了解等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣bx+c與x軸交于點(diǎn)A(8,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PB并延長交y軸于點(diǎn)D,若點(diǎn)P的橫坐標(biāo)為t,CD長為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接AC,過點(diǎn)P作PH⊥x軸,垂足為點(diǎn)H,延長PH交AC于點(diǎn)E,連接DE,射線DP關(guān)于DE對稱的射線DG交AC于點(diǎn)G,延長DG交拋物線于點(diǎn)F,當(dāng)點(diǎn)G為AC中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,原點(diǎn)為O,點(diǎn)A(0,3),B(2,3),C(2,-3),D(0,-3).點(diǎn)P,Q是長方形ABCD邊上的兩個(gè)動(dòng)點(diǎn),BC交x軸于點(diǎn)M.點(diǎn)P從點(diǎn)O出發(fā)以每秒1個(gè)單位長度沿O→A→B→M的路線做勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q也從點(diǎn)O出發(fā)以每秒2個(gè)單位長度沿O→D→C→M的路線做勻速運(yùn)動(dòng).當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)M時(shí),兩動(dòng)點(diǎn)均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,四邊形OPMQ的面積為S.
(1)當(dāng)t=2時(shí),求S的值;
(2)若S<5時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知規(guī)定一種新運(yùn)算:x※y=xy+1;x★y=x+y﹣1,例如:2※3=2×3+1=7;2★3=2+3﹣1=4.若a※(4★5)的值為17,且a※x=a★6,則x的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A. a3a2=a5B. a2+2a2=3a4C. a6÷a2=a3D. (a3)2=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店有單價(jià)為10元、15元和20元的三種文具盒出售,該商店統(tǒng)計(jì)了2014年3月份這三種文具盒的銷售情況,并繪制統(tǒng)計(jì)圖(不完整)如下:
(1)這次調(diào)查中一共抽取了多少個(gè)文具盒?
(2)求出圖1中表示“15元”的扇形所占圓心角的度數(shù);
(3)在圖2中把條形統(tǒng)計(jì)圖補(bǔ)充完整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com