【題目】如圖,已知△ABC內接于⊙O,AB是直徑,OD⊥BC于點D,延長DO交⊙O于F,連接OC,AF.
(1)求證:△COD≌△BOD;
(2)填空:①當∠1=時,四邊形OCAF是菱形; ②當∠1=時,AB=2 OD.
【答案】
(1)證明:
∵AF=OC=OF=AO,
∴△AOF為等邊三角形,
∴∠3=60°,且∠3=∠DOB=60°,
又∵OD⊥BC,
∴D是BC的中點,∠1=30°;
∵AB是直徑,
∴∠ACB=90°,
∴∠2=60°,
∴△AOC是等邊三角形,
∵△AOF是等邊三角形,
∴AF=OC=OF=AO,
在△AOC和△OAF中, ,
∴△AOC≌△AOF(SAS);
(2)30°;45°
【解析】(2)解:
當∠1=30°時,四邊形OCAF是菱形.
理由如下:
∵∠1=30°,AB是直徑,
∴∠BCA=90°,
∴∠2=60°,而OC=OA,
∴△OAC是等邊三角形,
∴OA=OC=CA,
又∵D,O分別是BC,BA的中點,
∴DO∥CA,
∴∠2=∠3=60°而OC=OA=AF.
∴△OAF是等邊三角形,
∴AF=OA=OF,
∴OC=CA=AF=OF,
∴四邊形OCAF是菱形;
②當∠1=45°時,AB=2 OD,
∵∠1=45°,
∵OD⊥BC于點D,
∴△BOD是等腰直角三角形,
∴OB= OD,
∴AB=2OB=2 OD.
【考點精析】根據(jù)題目的已知條件,利用菱形的判定方法和垂徑定理的相關知識可以得到問題的答案,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰直角△ABC,∠C=90°,點D是斜邊AB的中點,E是AC上的動點、∠EDF=90°,DF交BC 于點F.
(1)當 DE⊥AC,DF⊥BC 時,(如圖1),我們很容易得出:S△DEF+S△CEF=S△ABC.
(2)如圖2,DE與 AC不垂直,且點E在線段AC上時,(1)中的結論是否成立,如果不成立,請說明理由;如果成立,請證明.
(3)當點E運動到AC延長線上,其他條件不變,請把圖3補充完整,直接寫出 S△DEF,S△CEF,S△ABC的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,AD是經過A點的一條直線,且B、C在AD的兩側,BD⊥AD于D,CE⊥AD于E,交AB于點F,CE=10,BD=4,則DE的長為( 。
A. 6 B. 5 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分線.
(1)如圖1,若AD=BD,求∠A的度數(shù);
(2)如圖2,在(1)的條件下,作DE⊥AB于E,連接EC.求證:△EBC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點D為另一塊三角板DMN的直角頂點,DM、DN分別交AB、AC于點E、F.則下列四個結論:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四邊形AEDF=BC2.其中正確結論是_____(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為12,D,E為BC的三等分點,M,N分別為AB,AC上的動點,則四邊形DENM周長的最小值是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖已知△CAB和△CDE中,CA=CB,CD=CE,∠BCA=∠DCE=.連BE,BD.
(1)如圖1,若∠BCA=60,BD與AE交于點F,求∠AFB的度數(shù);
(2)如圖2,請?zhí)骄?/span>∠EBD,∠AEB與之間的關系;
(3)如圖3,直接寫出∠EBD,∠AEB與之間的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( )
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 6×6 的網格中,四邊形 ABCD 的頂點都在格點上,每個格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標系.
(1)畫出四邊形 ABCD 關于 y 軸對稱和四邊形 A′B′C′D′(點 A、B、C、D的對稱點分別是點 A′B′C′D′.
(2)求 A、B′、B、C 四點組成和四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com