【題目】正方形ABCD內(nèi)接于⊙O,E是 的中點,連接BE、CE,則∠ABE=°.

【答案】22.5
【解析】解:連接OA、OD、OE,如圖所示.
∵四邊形ABCD是園內(nèi)接正方形,
∴∠AOD=90°.
∵E是 的中點,
∴∠AOE=45°,
∴∠ABE= ×45°=22.5°.
所以答案是:22.5.
【考點精析】利用圓心角、弧、弦的關(guān)系和圓周角定理對題目進(jìn)行判斷即可得到答案,需要熟知在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( 。

A. 李老師要從包括小明在內(nèi)的四名班委中,隨機(jī)抽取2名學(xué)生參加學(xué)生會選舉,抽到小明的概率是

B. 一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8

C. 對甲、乙兩名運動員某個階段的比賽成績進(jìn)行分析,甲的成績數(shù)據(jù)的方差是S2=0.01,乙的成績數(shù)據(jù)的方差是S2=0.1,則在這個階段甲的成績比乙的成績穩(wěn)定

D. 一個盒子中裝有3個紅球,2個白球,這些球除顏色外都相同,從中隨機(jī)摸出一個球,記下顏色后放回,再從中隨機(jī)摸出一個球,兩次摸到相同顏色的球的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DBC的中點,連接AD,E,F(xiàn)分別是ADAD延長線上的點.且DE=DF,連接BF,CE,下列說法中:①△ABD和△ACD的面積相等;②∠BAD=CAD;BFCE;CE=BF,其中,正確的說法有__________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠B45°, AMBC,垂足為M

(1)如圖1,若AB=4,BC7,求AC的長;

(2)如圖2, D是線段AM上一點,MD=MC,點E是△ABC外一點,CE=CA,連接ED并延長交BC于點F,且∠BDF=∠CEF

求證①ACBD;

BFCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠BAC=90°,BAD=30°,AD=AE,則∠EDC的度數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,過點DAB,AC兩邊作垂線,垂足分別為E,F(xiàn),那么下列結(jié)論中不一定正確的是(  )

A. BD=CD B. DE=DF C. AE=AF D. ADE=ADF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是工人師傅用同一種材料制成的金屬框架,已知,,其中的周長為24cm,則制成整個金屬框架所需這種材料的總長度為( )

A. 45cm B. 48cm C. 51cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線y= (k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD

(1)求k的值和點E的坐標(biāo);
(2)點P是線段OC上的一個動點,是否存在點P,使∠APE=90°?若存在,求出此時點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國夢是中華民族每一個人的夢,也是每一個中小學(xué)生的夢,各中小學(xué)開展經(jīng)典誦讀活動,無疑是中國夢教育這一宏大樂章里的響亮音符,學(xué)校在經(jīng)典誦讀活動中,對全校學(xué)生用A、B、CD四個等級進(jìn)行評價,現(xiàn)從中抽取若干個學(xué)生進(jìn)行調(diào)查,繪制出了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)共抽取了多少個學(xué)生進(jìn)行調(diào)查?

2)將圖甲中的折線統(tǒng)計圖補(bǔ)充完整.

3)求出圖乙中B等級所占圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案