【題目】下列計算正確的是(
A. =﹣5
B.(x32=x5
C.x6÷x3=x2
D.( 2=4

【答案】D
【解析】解:A、 =5,故此選項錯誤; B、(x32=x6 , 故此選項錯誤;
C、x6÷x3=x3 , 故此選項錯誤;
D、( 2=4,正確.
故選:D.
【考點精析】利用整數(shù)指數(shù)冪的運算性質(zhì)和算數(shù)平方根對題目進行判斷即可得到答案,需要熟知aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));正數(shù)a的正的平方根叫做a的算術(shù)平方根;正數(shù)和零的算術(shù)平方根都只有一個,零的算術(shù)平方根是零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示在ABC中,∠C=90°,AC=BC,AD平分∠CABBCD,DEBAE,AB=6厘米,則DEB的周長是_____厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y= x2+2x與x軸相交于O、B,頂點為A,連接OA.

(1)求點A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線y= x2+2x向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線y= x2+2x上,請說明理由.
(4)若點P為x軸上的一個動點,試探究在拋物線m上是否存在點Q,使以點O、P、C、Q為頂點的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由. (參考公式:二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點坐標(biāo)為( , ),對稱軸是直線x= .)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:

解:設(shè)a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學(xué)因式分解的結(jié)果是否徹底:________(徹底不徹底”);

(2)若不徹底,請你直接寫出因式分解的最后結(jié)果:________;

(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雖然近幾年無錫市政府加大了太湖水治污力度,但由于大規(guī)模、高強度的經(jīng)濟活動和日益增加的污染負(fù)荷,使部分太湖水域水質(zhì)惡化,富營養(yǎng)化不斷加。疄榱吮Wo水資源,我市制定一套節(jié)水的管理措施,其中對居民生活用水收費作如下規(guī)定:

月用水量(噸)

單價(元/噸)

不大于10噸部分

1.5

大于10噸不大于m噸部分(20≤m≤50)

2

大于m噸部分

3


(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費;
(2)記該用戶六月份用水量為x噸,繳納水費為y元,試列出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該用戶六月份用水量為40噸,繳納水費y元的取值范圍為70≤y≤90,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是
( 。

A.
B.
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角尺的60°角和90°角的頂點A疊放在一起.將三角尺ADE繞點A旋轉(zhuǎn),旋轉(zhuǎn)過程中三角尺ADE的邊AD始終在∠BAC的內(nèi)部在旋轉(zhuǎn)過程中,探索:

(1)∠BAE與∠CAD的度數(shù)有何數(shù)量關(guān)系,并說明理由;

(2)試說明∠CAE﹣∠BAD=30°;

(3)作∠BAD和∠CAE的平分線AM、AN,在旋轉(zhuǎn)過程中∠MAN的值是否發(fā)生變化?若不變,請求出這個定值;若變化,請求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)學(xué)實習(xí)小組在高300米的山腰(即PH=300米)P處進行測量,測得對面山坡上A處的俯角為30°,對面山腳B處的俯角60°,已知tan∠ABC= ,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥BC,則A,B兩點間的距離為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有40個黑、白兩種顏色的球,這些球除顏色外完全相同.小麗做摸球?qū)嶒灒瑪噭蚝笏龔暮凶永锩鲆粋球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,表是實驗中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

200

300

500

800

1000

3000

摸到白球的次數(shù)m

65

124

178

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為 . (精確到0.1)

查看答案和解析>>

同步練習(xí)冊答案