【題目】RtABC中,已知C90°,B50°,點D在邊BC上,BD2CD(圖4).把ABC繞著點D逆時針旋轉(zhuǎn)m0m180)度后,如果點B恰好落在初始RtABC的邊上,那么m_________

【答案】80120

【解析】本題可以圖形的旋轉(zhuǎn)問題轉(zhuǎn)化為點B繞D點逆時針旋轉(zhuǎn)的問題,故可以D點為圓心,DB長為半徑畫弧,第一次與原三角形交于斜邊AB上的一點B,交直角邊AC于B,此時DB=DB,DB=DB=2CD,由等腰三角形的性質(zhì)求旋轉(zhuǎn)角BDB的度數(shù),在RtBCD中,解直角三角形求CDB,可得旋轉(zhuǎn)角BDB的度數(shù).

解:如圖,在線段AB取一點B,使DB=DB,在線段AC取一點B,使DB=DB


∴①旋轉(zhuǎn)角m=BDB=180°-DBB-B=180°-2B=80°,
在RtBCD中,DB=DB=2CD,∴∠CDB=60°,
旋轉(zhuǎn)角BDB=180°-CDB=120°
故答案為:80°或120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN

求證:

分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明

如圖4,當時,證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線ABCD相交于點O,OA是∠EOC的角平分線.

1)若∠EOC80°,求∠BOD的度數(shù);

2)∠EOC:∠EOD23,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖RtABC,C=90°DBC邊的中點,BD=2tanB=

1)求ADAB的長;

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,A(-21),B(-4,-2),C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應(yīng)點C′的坐標為(4,1)

(1)A′、B′兩點的坐標分別為A′______B′______;

(2)作出△ABC平移之后的圖形△A′B′C′

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等,交易其一,金輕十三兩,問金、銀一枚各重幾何?”意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相同,兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計),問黃金、白銀每枚各種多少兩?設(shè)黃金重兩,每枚白銀重兩,根據(jù)題意可列方程組為____.

查看答案和解析>>

同步練習(xí)冊答案