【題目】如圖,正方形ABCD的邊長為3cm,E為CD邊上一點,∠DAE=30°,M為AE的中點,過點M作直線分別與AD、BC相交于點P、Q.若PQ=AE,則AP等于 cm.
【答案】1或2.
【解析】試題分析:根據(jù)題意畫出圖形,過P作PN⊥BC,交BC于點N,
∵四邊形ABCD為正方形,
∴AD=DC=PN,
在Rt△ADE中,∠DAE=30°,AD=3cm,
∴tan30°=,即DE=cm,
根據(jù)勾股定理得:AE=cm,
∵M為AE的中點,
∴AM=cm;
在Rt△ADE和Rt△PNQ中,AD=PN,AE=PQ,
∴Rt△ADE≌Rt△PNQ(HL),
∴DE=NQ,∠DAE=∠NPQ=30°,
∵PN∥DC,
∴∠PFA=∠DEA=60°,
∴∠PMF=90°,即PM⊥AF,
在Rt△AMP中,∠MAP=30°,cos30°=,
∴AP=2cm;
由對稱性得到AP′=DP=AD-AP=3-2=1cm,
綜上,AP等于1cm或2cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,AD平分∠BAC交⊙O于點D,交BC于點K,連接DB、DC.
(1)如圖1,求證:DB=DC;
(2)如圖2,點E、F在⊙O上,連接EF交DB、DC于點G、H,若DG=CH,求證:EG=FH;
(3)如圖3,在(2)的條件下,BC經(jīng)過圓心O,且AD⊥EF,BM平分∠ABC交AD于點M,DK=BM,連接GK、HK、CM,若△BDK與△CKM的面積差為1,求四邊形DGKH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)的圖象在第一象限交于點A(8,6),與y軸的負半軸交于點B,且OA=OB.
(1)求函數(shù)y=kx+b和的表達式;
(2)已知點C(0,10),試在該一次函數(shù)圖象上確定一點M,使得MB=MC。求此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的直徑AB垂直弦CD于點E,過C點作CG∥AD交AB延長線于點G,連結(jié)CO并延長交AD于點F,且CF⊥AD.
(1)求證:CG是⊙O的切線;
(2)若AB=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個公共點.
()求m的取值范圍;
()若m取滿足條件的最小的整數(shù),
①寫出這個二次函數(shù)的表達式;
②當n≤x≤1時,函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;
③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過原點O.設(shè)平移后的圖象對應(yīng)的函數(shù)表達式為y=a(x-h(huán))2 +k,當x<2時,y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+b交y軸于點A,交x軸于點B,S△AOB=.
(1)求b的值;
(2)點C以每秒1個單位長度的速度從O點出發(fā)沿x軸向點B運動,點D以每秒2個單位長度的速度從A點出發(fā)沿y軸向點O運動,C,D兩點同時出發(fā),當點D運動到點O時,C,D兩點同時停止運動.連接CD,設(shè)點C的運動時間為t秒,△CDO的面積為S,求S與t的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)條件下,過點C作CE⊥CD交AB于點E,過點D作DF∥x軸交AB于點F,過點F作FH⊥CE,垂足為H.在CH上取點M,使得MH:HE=8:33,連接FM,若∠FMH=∠FEH,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正的邊長為2,頂點、在半徑為的圓上,頂點在圓內(nèi),將正繞點逆時針旋轉(zhuǎn),當點第一次落在圓上時,則點運動的路線長為__________(結(jié)果保留);若點落在圓上記做第1次旋轉(zhuǎn),將繞點逆時針旋轉(zhuǎn),當點第一次落在圓上記做第2次旋轉(zhuǎn),再繞將逆時針旋轉(zhuǎn),當點第一次落在圓上,記做第3次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當完成第2018次旋轉(zhuǎn)時,邊共回到原來位置__________次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連接CE,AE,CD,若∠AEC=∠ODC.
(1)求證:直線CD為⊙O的切線;
(2)若AB=10,BC=8,則線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國正在逐步進入人口老齡化社會,某市老齡化社會研究機構(gòu)經(jīng)過抽樣調(diào)查,發(fā)現(xiàn)當?shù)乩夏耆说娜粘P蓍e方式主要有,,,,五種類型,抽樣調(diào)查的統(tǒng)計結(jié)果如下表,則下列說法不正確的是( )
休閑類型 | 休閑方式 | 人數(shù) |
老年大學(xué) | ||
老年合唱隊 | ||
老年舞蹈隊 | ||
太極拳 | ||
其它方式 |
A.當?shù)乩夏耆诉x擇型休閑方式的人數(shù)最少
B.當?shù)乩夏耆诉x擇型休閑方式的頻率是
C.估計當?shù)?/span>萬名老年人中約有萬人選擇型休閑方式
D.這次抽樣調(diào)查的樣本容量是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com