已知二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)位于x軸下方,它到x軸的距離為4,下表是x與y的對(duì)應(yīng)值表:
x______0______2______
y0-3-4-30
(1)求出二次函數(shù)的解析式;
(2)將表中的空白處填寫完整;
(3)在右邊的坐標(biāo)系中畫出y=ax2+bx+c的圖象;
(4)根據(jù)圖象回答:當(dāng)x為何值時(shí),函數(shù)y=ax2+bx+c的值大于0.
(1)依題意可知,頂點(diǎn)縱坐標(biāo)為-4,
由表格及二次函數(shù)圖象的對(duì)稱性可知,拋物線對(duì)稱軸為直線x=1,
頂點(diǎn)坐標(biāo)為(1,-4)…(1分)
∴二次函數(shù)解析式可變形為y=a(x-1)2-4
又由圖象過(0,-3),有-3=a-4,解得a=1
∴二次函數(shù)解析式為y=x2-2x-3…(2分)

(2)完整表格如下;
x-10123
y0-3-4-30
(3)拋物線y=x2-2x-3的圖象如圖所示;…(4分)


(4)根據(jù)圖象可知:
當(dāng)x<-1或x>3時(shí),函數(shù)y=ax2+bx+c的值大于0.…(5分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過點(diǎn)A(-1,-1)和B(3,-9).
(1)求該二次函數(shù)的解析式;
(2)填空:該拋物線的對(duì)稱軸是______;頂點(diǎn)坐標(biāo)是______;當(dāng)x=______時(shí),y隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC內(nèi)接于半徑為4的☉0,過0作BC的垂線,垂足為F,且交☉0于P、Q兩點(diǎn).OD、OE的長分別是拋物線y=x2+2mx+m2-9與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo).
(1)求拋物線的解析式;
(2)是否存在直線l,使它經(jīng)過拋物線與x軸的交點(diǎn),并且原點(diǎn)到直線l的距離是2?如果存在,請(qǐng)求出直線l的解析式;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=-x2+kx+3的圖象與x軸交于點(diǎn)(3,0)
(1)求函數(shù)的解析式;
(2)畫出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,點(diǎn)A在y軸上,⊙A與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)D(0,3)和點(diǎn)E(0,-1)
(1)求經(jīng)過B、E、C三點(diǎn)的二次函數(shù)的解析式;
(2)若經(jīng)過第一、二、三象限的一動(dòng)直線切⊙A于點(diǎn)P(s,t),與x軸交于點(diǎn)M,連接PA并延長與⊙A交于點(diǎn)Q,設(shè)Q點(diǎn)的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時(shí),求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點(diǎn)的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過該隧道?通過計(jì)算說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P為拋物線y=
3
4
x2-
3
2
x+
1
4
上對(duì)稱軸右側(cè)的一點(diǎn),且點(diǎn)P在x軸上方,過點(diǎn)P作PA垂直x軸于點(diǎn)A,PB垂直y軸于點(diǎn)B,得到矩形PAOB.若AP=1,求矩形PAOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)c(0,3).
(1)求此拋物線所對(duì)應(yīng)函數(shù)的表達(dá)式;
(2)若拋物線的頂點(diǎn)為D,在其對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PCD為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:a、b、c分別是△ABC的∠A、∠B、∠C的對(duì)邊(a>b).二次函數(shù)y=(x-2a)x-2b(x-a)+c2的圖象的頂點(diǎn)在x軸上,且sinA、sinB是關(guān)于x的方程(m+5)x2-(2m-5)x+m-8=0的兩個(gè)根.
(1)判斷△ABC的形狀,關(guān)說明理由;
(2)求m的值;
(3)若這個(gè)三角形的外接圓面積為25π,求△ABC的內(nèi)接正方形(四個(gè)頂點(diǎn)都在三角形三邊上)的邊長.

查看答案和解析>>

同步練習(xí)冊(cè)答案