【題目】閱讀下面材料
在數(shù)學課上,老師提出如下問題:
己知:已知:Rt△ABC,∠ABC=90°.
求作:矩形ABCD.
小敏的作法如下:
①以A為圓心,BC長為半徑作弧,以C為圓心,AB長為半徑作弧,兩弧相交于點D;
②連接DA、DC;所以四邊形ABCD為所求矩形.
老師說:“小敏的作法正確.”
請回答:小敏的作法正確的理由是____________________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸分別交于原點和點,與對稱軸交于點.矩形的邊在軸正半軸上,且,邊,與拋物線分別交于點,.當矩形沿軸正方向平移,點,位于對稱軸的同側(cè)時,連接,此時,四邊形的面積記為;點,位于對稱軸的兩側(cè)時,連接,,此時五邊形的面積記為.將點與點重合的位置作為矩形平移的起點,設矩形平移的長度為.
(1)求出這條拋物線的表達式;
(2)當時,求的值;
(3)當矩形沿著軸的正方向平移時,求關于的函數(shù)表達式,并求出為何值時,有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高市民的環(huán)保意識,倡導“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.
(1)今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?
(2)試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,將陰影部分剪下,拼成右邊的矩形,由圖形①到圖形②的變化過程能夠驗證的一個等式是( 。
A. a(a+b)=a2+ab B. a2﹣b2=(a+b)(a﹣b)
C. (a+b)2=a2+2ab+b2 D. a(a﹣b)=a2﹣ab
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別用火柴棍連續(xù)搭建正三角形和正六邊形,公共邊只用一根火柴棍.如果搭建正三角形和正六邊形共用了2018根火柴棍,并且正三角形的個數(shù)比正六邊形的個數(shù)多7個,那么能連續(xù)搭建正三角形的個數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形CEFG是兩個邊長分別為a,b的正方形.
(1)用含a,b的代數(shù)式表示三角形BGF的面積;(2)當,時,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,在四邊形ABCD中,點O,E,F(xiàn),G分別是AB,BC,CD,AD的中點,連接OE,EF,F(xiàn)G,GO,GE.
(1)證明:四邊形OEFG是平行四邊形;
(2)將△OGE繞點O順時針旋轉(zhuǎn)得到△OMN,如圖2所示,連接GM,EN.
①若OE=,OG=1,求的值;
②試在四邊形ABCD中添加一個條件,使GM,EN的長在旋轉(zhuǎn)過程中始終相等.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司員工分別住在三個住宅區(qū),區(qū)有人,區(qū)有人,區(qū)有人.三個區(qū)在一條直線上,位置如圖所示.公司的接送打算在此間只設一個?奎c,要使所有員工步行到?奎c的路程總和最少,那么?奎c的位置應在( )
A.區(qū)B.區(qū)C.區(qū)D.不確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com