【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(1,0),點(diǎn)B在拋物線y=ax2+ax2上.

1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;拋物線的解析式為

2)設(shè)拋物線的頂點(diǎn)為D,求△DBC的面積;

3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】1A02);B1);23P)或(2,1

【解析】

1)過點(diǎn)BBFx軸于F,先根據(jù)勾股定理求出OA的長,即可得出點(diǎn)A的坐標(biāo),再求出OF、BF的長即可求出B的坐標(biāo);再把點(diǎn)B的坐標(biāo)代入拋物線的解析式,求出a的值,即可求出拋物線的解析式;

2)先求出點(diǎn)D的坐標(biāo),再用待定系數(shù)法求出直線BD的解析式,設(shè)直線BDx軸交點(diǎn)為E,求出CE的長,再根據(jù)SDBC=SCEB+SCED進(jìn)行計(jì)算即可;

3)假設(shè)存在點(diǎn)P,①若以點(diǎn)C為直角頂點(diǎn);則延長BC至點(diǎn)P1,使得P1C=BC,得到等腰直角三角形△ACP1,過點(diǎn)P1P1Mx軸,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的對應(yīng)邊相等可得出點(diǎn)P1點(diǎn)的坐標(biāo);

②若以點(diǎn)A為直角頂點(diǎn);則過點(diǎn)AAP2CA,且使得AP2=AC,得到等腰直角三角形△ACP2,過點(diǎn)P2P2Ny軸,同理可證△AP2N≌△CAO,由全等三角形的性質(zhì)可得出點(diǎn)P2的坐標(biāo);點(diǎn)P1P2的坐標(biāo)代入拋物線的解析式進(jìn)行檢驗(yàn)即可.

1)∵C-1,0),AC=,

OA==2,

A02);

過點(diǎn)BBFx軸于F,垂足為F,

∵∠ACO+CAO=90,∠ACO+BCF=90,

∴∠CAO=BCF

在ΔAOC和ΔCFB中,

∴ΔAOC≌ΔCFB,

CF=AO=2,BF=CO=1

OF=3

B(-3,1);

B(-3,1)代入y=ax2+ax2中,得:1=9a-3a-2,

解得:a=,

∴拋物線的解析式為y=x2+x2,

故答案為:A02);B,1);;

2)由知,拋物線的頂點(diǎn)坐標(biāo)D(,),
設(shè)直線BD的關(guān)系式為y=kx+b,將點(diǎn)BD的坐標(biāo)代入得:

,

解得:

∴直線BD的解析式為,設(shè)直線BDx軸交于點(diǎn)E

則點(diǎn)E,0),CE=,

SDBC=SCEB+SCED==;

3)假設(shè)存在點(diǎn)P,使得△ACP仍然是以AC為直角邊的等腰直角三角形:
①若以點(diǎn)C為直角頂點(diǎn);
則延長BC至點(diǎn)P1,使得P1C=BC,得到等腰直角三角形△ACP1,
過點(diǎn)P1P1Mx軸,
CP1=BC,∠MCP1=BCF,∠P1MC=BFC=90 °
∴△MP1C≌△FBC
CM=CF=2,P1M=BF=1,
P1(1-1);
②若以點(diǎn)A為直角頂點(diǎn);
則過點(diǎn)AAP2CA,且使得AP2=AC,得到等腰直角三角形△ACP2
過點(diǎn)P2P2Ny軸,同理可證△AP2N≌△CAO,
NP2=OA=2,AN=OC=1,
P2(21),
經(jīng)檢驗(yàn),點(diǎn)P1(1-1)與點(diǎn)P2(21)都在拋物線上.

綜上所述,滿足條件的P坐標(biāo)為(,)或(2,1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,ABC是等邊三角形,點(diǎn)D,E分別在邊BC,AC上,若∠ADE60°,則ABCE,BD,DC之間的數(shù)量關(guān)系是   

2)拓展探究

如圖2,ABC是等腰三角形,ABAC,∠Bα,點(diǎn)D,E分別在邊BC,AC上.若∠ADEα,則(1)中的結(jié)論是否仍然成立?請說明理由.

3)解決問題

如圖3,在ABC中,∠B30°,ABAC4cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度沿A→B方向勾速運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)B出發(fā),以cm/s的速度沿B→C方向勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)運(yùn)動(dòng)至終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),連接PM,在PM右側(cè)作∠PMG30°,該角的另一邊交射線CA于點(diǎn)G,連接PC.設(shè)運(yùn)動(dòng)時(shí)間為ts),當(dāng)△APG為等腰三角形時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)AC分別是直線y=x+4與坐標(biāo)軸的交點(diǎn),點(diǎn)B的坐標(biāo)為(﹣2,0),點(diǎn)D是邊AC上的一點(diǎn),DEBC于點(diǎn)E,點(diǎn)F在邊AB上,且D,F兩點(diǎn)關(guān)于y軸上的某點(diǎn)成中心對稱,連結(jié)DF,EF.設(shè)點(diǎn)D的橫坐標(biāo)為mEF2l,請?zhí)骄浚?/span>

①線段EF長度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗(yàn)證﹣應(yīng)用的方法進(jìn)行探究,請你一起來解決問題.

1)小明利用幾何畫板軟件進(jìn)行觀察,測量,得到lm變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(diǎn)(如圖2).請你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識(shí)能驗(yàn)證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長度的最小值.

3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校體育社團(tuán)活動(dòng)計(jì)劃開設(shè)足球、籃球、排球、乒乓球四個(gè)體育興趣小組,每個(gè)學(xué)生只能選報(bào)一項(xiàng)參加活動(dòng),為了解該社團(tuán)成員選擇興趣小組的情況,某調(diào)查小組在社團(tuán)中進(jìn)行了一次抽樣調(diào)查,繪制了如下尚不完整的統(tǒng)計(jì)圖表.

根據(jù)以上信息解答下列問題:

1)本次抽樣調(diào)查的樣本容量為 ,扇形統(tǒng)計(jì)圖中的值為

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該學(xué)校有學(xué)生人,有的學(xué)生選擇了參加體育社團(tuán)活動(dòng),請你估計(jì)該校選擇排球和足球這兩個(gè)興趣小組的學(xué)生大約共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在第一象限內(nèi)的圖象如圖所示,點(diǎn)P的圖象上一動(dòng)點(diǎn),作PCx軸于點(diǎn)C,交的圖象于點(diǎn)A,作PDy軸于點(diǎn)D,交的圖象于點(diǎn)B,給出如下結(jié)論:①△ODB與△OCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④PA=3AC,其中正確的結(jié)論序號(hào)是( )

A.①③B.②③④C.①③④D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè)第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤是160,花卉的平均每盆利潤是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計(jì)劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是半圓的中點(diǎn),連接CDOB于點(diǎn)E,點(diǎn)FAB延長線上一點(diǎn),CFEF

1)求證:FC是⊙O的切線;

2)若CF5,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑為,點(diǎn)在圓周上(異于),

1)若,,求圖中扇形的面積.

2)若的平分線,求證:直線的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某浴室花灑實(shí)景圖,圖2是該花灑的側(cè)面示意圖.已知活動(dòng)調(diào)節(jié)點(diǎn)B可以上下調(diào)整高度,離地面CD的距離BC160cm.設(shè)花灑臂與墻面的夾角為α,可以扭動(dòng)花灑臂調(diào)整角度,且花灑臂長AB30cm.假設(shè)水柱AE垂直AB直線噴射,小華在離墻面距離CD120cm處淋。

1)當(dāng)α30°時(shí),水柱正好落在小華的頭頂上,求小華的身高DE

2)如果小華要洗腳,需要調(diào)整水柱AE,使點(diǎn)E與點(diǎn)D重合,調(diào)整的方式有兩種:

其他條件不變,只要把活動(dòng)調(diào)節(jié)點(diǎn)B向下移動(dòng)即可,移動(dòng)的距離BF與小華的身高DE有什么數(shù)量關(guān)系?直接寫出你的結(jié)論;

活動(dòng)調(diào)節(jié)點(diǎn)B不動(dòng),只要調(diào)整α的大小,在圖3中,試求α的度數(shù).

(參考數(shù)據(jù):1.73,sin8.6°≈0.15sin36.9°≈0.60,tan36.9°≈0.75

查看答案和解析>>

同步練習(xí)冊答案