【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線相交于A(1,),B(4,0)兩點(diǎn).

(1)求出拋物線的解析式;

(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;

(3)點(diǎn)P是線段AB上一動點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點(diǎn)M的坐標(biāo).

【答案】(1);(2)D(1,0)或(0,)或(0,;(3),M(,).

【解析】

試題分析:(1)由A、B兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

(2)分D在x軸上和y軸上,當(dāng)D在x軸上時,過A作AD⊥x軸,垂足D即為所求;當(dāng)D點(diǎn)在y軸上時,設(shè)出D點(diǎn)坐標(biāo)為(0,d),可分別表示出AD、BD,再利用勾股定理可得到關(guān)于d的方程,可求得d的值,從而可求得滿足條件的D點(diǎn)坐標(biāo);

(3)過P作PF⊥CM于點(diǎn)F,利用Rt△ADO∽Rt△MFP以及三角函數(shù),可用PF分別表示出MF和NF,從而可表示出MN,設(shè)BC=a,則可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,從而可用PF表示出CN,可求得的值;借助a可表示出M點(diǎn)的坐標(biāo),代入拋物線解析式可求得a的值,從而可求出M點(diǎn)的坐標(biāo).

試題解析:

(1)∵A(1,),B(4,0)在拋物線的圖象上,∴,解得,∴拋物線解析式為;

(2)存在三個點(diǎn)滿足題意,理由如下:

當(dāng)點(diǎn)D在x軸上時,如圖1,過點(diǎn)A作AD⊥x軸于點(diǎn)D,∵A(1,),∴D坐標(biāo)為(1,0);

當(dāng)點(diǎn)D在y軸上時,設(shè)D(0,d),則,,且,∵△ABD是以AB為斜邊的直角三角形,∴

,即,解得d=,D點(diǎn)坐標(biāo)為(0,)或(0,);

綜上可知存在滿足條件的D點(diǎn),其坐標(biāo)為(1,0)或(0,)或(0,

(3)如圖2,過P作PF⊥CM于點(diǎn)F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴=,∴MF=PF,在Rt△ABD中,BD=3,AD=,∴tan∠ABD=,∴∠ABD=60°,設(shè)BC=a,則CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF=,∴FN=PF,∴MN=MF+FN=PF,∵S△BCN=2S△PMN,∴,∴a=PF,∴NC=a=PF,∴==,∴MN=NC==a,∴MC=MN+NC=()a,∴M點(diǎn)坐標(biāo)為(4﹣a,()a),又M點(diǎn)在拋物線上,代入可得=()a,解得a=或a=0(舍去),OC=4﹣a=,MC=,∴點(diǎn)M的坐標(biāo)為(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)介紹,2020年央視春晚直播期間,全球觀眾參與快手春晚紅包互動累計次數(shù)達(dá)639億次.“639億”用科學(xué)記數(shù)法表示為(

A.6.39×1010B.0.639×1011C.639×108D.6.39×1011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)xOy中,正比例函數(shù)的圖象與反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(2,﹣2).

(1)分別求這兩個函數(shù)的表達(dá)式;

(2)將直線OA向上平移3個單位長度后與y軸交于點(diǎn)B,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為C,連接AB,AC,求點(diǎn)C的坐標(biāo)及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克 元;

(2)求、與x的函數(shù)表達(dá)式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上的一點(diǎn),AD=BD,ADC=80°.

(1)求∠B的度數(shù);

(2)若∠BAC=70°,判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國倡導(dǎo)的“一帶一路”地區(qū)覆蓋的總?cè)丝跒?/span>4400000000人,這個數(shù)用科學(xué)記數(shù)法表示為( 。

A.44×108B.4.4×108C.4.4×109D.44×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A關(guān)于x軸的對稱點(diǎn)為(2,-1),則點(diǎn)A的坐標(biāo)為(

A.(-2,-1B.2,1C.(-2,1D.2,-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標(biāo)語,其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標(biāo)語CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).

(1)請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);

(2)求點(diǎn)M(x,y)在函數(shù)的圖象上的概率.

查看答案和解析>>

同步練習(xí)冊答案