【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2 (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}前n項(xiàng)和Tn

【答案】解:(I)∵Sn=2an﹣2,∴n≥2時,an=Sn﹣Sn﹣1=2an﹣2﹣(2an﹣1﹣2),化為:an=2an﹣1 . n=1時,a1=2a1﹣2,解得a1=2.
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)與公比都為2.
∴an=2n
(II)bn= = ,
∴數(shù)列{bn}前n項(xiàng)和Tn= +…+ ,
= +…+ +
=1+ + +…+ =1+
∴Tn=3﹣
【解析】(I)Sn=2an﹣2,可得n≥2時,an=Sn﹣Sn﹣1 , 化為:an=2an﹣1 . n=1時,a1=2a1﹣2,解得a1 . 利用等比數(shù)列的通項(xiàng)公式即可得出.(II)bn= = ,利用錯位相減法與等比數(shù)列的求和公式即可得出.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點(diǎn)O的直線AB與反比例函數(shù)(k>0)的圖象交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(﹣2,m),過點(diǎn)A作AC⊥y軸于點(diǎn)C,OA的垂直平分線DE交OC于點(diǎn)D,交AB于點(diǎn)E.若△ACD的周長為5,則k的值為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28


(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AD平分∠CAB,過點(diǎn)D作AC的垂線,與AC的延長線相交于點(diǎn)E,與AB的延長線相交于點(diǎn)F.

(1)求證:EF與⊙O相切;
(2)若AB=6,AD=,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為 ,曲線C的極坐標(biāo)方程為:ρsin2θ=cosθ,將曲線C上所有點(diǎn)的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線C1 . (Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)已知直線l與曲線C1交于A,B兩點(diǎn),點(diǎn)P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,D為線段BC的中點(diǎn),AB=2AC=2,tan∠CAD=sin∠BAC,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l.⊙F與C交于A,B兩點(diǎn),與x軸的負(fù)半軸交于點(diǎn)P. (Ⅰ)若⊙F被l所截得的弦長為 ,求|AB|;
(Ⅱ)判斷直線PA與C的交點(diǎn)個數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是AB邊上一點(diǎn),過點(diǎn)D作DE∥BC,交AC于E,點(diǎn)F是DE延長線上一點(diǎn),聯(lián)結(jié)AF.
(1)如果 ,DE=6,求邊BC的長;
(2)如果∠FAE=∠B,F(xiàn)A=6,F(xiàn)E=4,求DF的長.

查看答案和解析>>

同步練習(xí)冊答案