【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)y=﹣x+12x軸,y軸分別相交于點(diǎn)A,B,ABO的平分線(xiàn)與x軸相交于點(diǎn)C.

(1)如圖1,求點(diǎn)C的坐標(biāo);

(2)如圖2,點(diǎn)D,E,F(xiàn)分別在線(xiàn)段BC,AB,OB上(點(diǎn)D,E,F(xiàn)都不與點(diǎn)B重合),連接DE,DF,EF,且∠EDF+∠OBC=90°,求證:∠FED=AED;

(3)如圖3,在(2)的條件下,延長(zhǎng)線(xiàn)段FEx軸相交于點(diǎn)G,連接DG,若∠CGD=FGD,BF:BE=5:8,求直線(xiàn)DF的解析式.

【答案】(1)點(diǎn)C坐標(biāo)為(4,0);(2)見(jiàn)解析;(3)直線(xiàn)DF的解析式為y=﹣x+7.

【解析】整體分析

(1)作CHAB于H,由△OBC≌△HBC求BH,Rt△ACH,求CH,即得OC;(2)過(guò)點(diǎn)D分別作DMy軸于點(diǎn)M,DNAB于點(diǎn)N,在NA上截取NP=FM,連接PD,SAS證△DFM≌△DPN,得DF=DP,∠EDF=∠EDP,證△DEF≌△DEP;(3)過(guò)點(diǎn)F作FQBE于點(diǎn)Q,過(guò)點(diǎn)D作DMy軸于M,DNAB于N,DREF于R,DSOG于點(diǎn)S,過(guò)點(diǎn)A作ATBC交BC的延長(zhǎng)線(xiàn)于T,連接AD.解Rt△ACT求ST,AT,∠ADT=∠DAT=45°,求DC,從而得DS,OS,求出D的坐標(biāo),判斷DF∥AB,即可求DF的解析式.

解:(1)如圖1,作CHAB于H.

由題意A(9,0),B(0,12),

RtAOB中,AB===15,tanOAB===,

∵∠CBH=∠CBO,∠CHB=∠COB,CB=CB,

∴△OBC≌△HBC,

∴BH=OB=12,OC=CH,AH=15﹣12=3,

RtACH中,tanCAH==,

∠CH=4,

∴OC=CH=4,

點(diǎn)C坐標(biāo)為(4,0).

(2)解:如圖2,過(guò)點(diǎn)D分別作DMy軸于點(diǎn)M,DNAB于點(diǎn)N,在NA上截取NP=FM,連接PD.

∵∠EDF+∠OBC=90°,∠BDM+∠OBC=90°,

∴∠EDF=BDM,同理BDN=BDM=MDN,

∴∠EDF=MDN,

∵∠DBM=∠DBN,DM⊥OB,DN⊥AB,

∴DM=DN,

∵∠FMD=∠PND=90°,NP=FM,

∴△DFM≌△DPN,

∴DF=DP,∠FDM=∠PDN,

∴∠FDM+∠FDN=∠PDN+∠FDN,即∠FDP=∠MDN,

∴∠EDF=FDP=EDP,

∵DE=DE,

∴△DEF≌△DEP,

∴∠FED=∠AED.

(3)解:如圖3,過(guò)點(diǎn)F作FQBE于點(diǎn)Q,過(guò)點(diǎn)D作DMy軸于M,DNAB于N,DREF于R,DSOG于點(diǎn)S,過(guò)點(diǎn)A作ATBC交BC的延長(zhǎng)線(xiàn)于T,連接AD.

∵∠DEF=∠DEA,DR⊥EF,DN⊥EA,

DR=DN,同理DR=DS,

∴DN=DS,

∴∠BAD=∠OAD,同理∠OFD=∠DFG,

RtACT中,AC=9﹣4=5,tanACT=tanBCO==3, =3,

設(shè)CT=m,則AT=3m.

∵CT2+AT2=AC2,

∴m2+(3m)2=52,

解得m=或﹣(舍),

CT=,AT=,

∵∠ADC=ABD+BAD=OBA+BAO)=×90°=45°,

∴∠DAT=45°=∠ADC,

DT=AT=,

CD=DT﹣CT=,同理可得,CS=1,DS=3=OM,

∴OS=4﹣1=3,

點(diǎn)D坐標(biāo)(3,3),

設(shè)BF=5n,則BE=8n,在RtBFQ中,cosFBQ===,

∴BQ=4n=EQ,

∴FQ⊥AB,∠BFQ=∠EFQ,

∴∠DFQ=DFC+EFQ=OFG+BFE)=×180°=90°,

∴∠DFQ=∠BQF=90°,

∴DF∥AB,

設(shè)直線(xiàn)DF的解析式為y=﹣x+b,

3=﹣×3+b,

解得b=7,

直線(xiàn)DF的解析式為y=﹣x+7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形擺放在平面直角坐標(biāo)系中,點(diǎn)軸上,點(diǎn)軸上,

,,過(guò)點(diǎn)的直線(xiàn)交矩形的邊于點(diǎn),且點(diǎn)不與點(diǎn)、重合,過(guò)點(diǎn),軸于點(diǎn),交軸于點(diǎn).

1)如圖1,若為等腰直角三角形,求直線(xiàn)的函數(shù)解析式;

2)如圖2,過(guò)點(diǎn)軸于點(diǎn),若四邊形是平行四邊形,求直線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A,C分別在x軸,y軸上,反比例函數(shù)的圖象與正方形的兩邊AB,BC分別交于點(diǎn)MN,NDx軸,垂足為D,連接OMON,MN.下列結(jié)論:①△OCN≌△OAM;ONMN;③四邊形DAMN與△MON面積相等;④若∠MON45°,MN2,則點(diǎn)C的坐標(biāo)為(0, 1)其中正確結(jié)論的序號(hào)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)

(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫(huà)出平移后得到的△A1B1C1

(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2,并直接寫(xiě)出點(diǎn)B2、C2的坐標(biāo);

(3)在第(2)問(wèn)中,點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2的過(guò)程中運(yùn)動(dòng)的路徑長(zhǎng)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情填,

在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖1,將矩形紙片ABCD沿對(duì)角線(xiàn)AC剪開(kāi),得到△ABC和△ACD、并且量得AB2cm,AC4cm.

操作發(fā)現(xiàn):

(1)將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)∠α,使∠α=∠BAC,得到加圖2所示的△AC′D,過(guò)點(diǎn)CAC′的平行線(xiàn),與DC′的延長(zhǎng)線(xiàn)交于點(diǎn)E,則四邊形ACEC'的形狀是_________

(2)創(chuàng)新小組將圖1中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使B,A,D三點(diǎn)在同一條直線(xiàn)上,得到如圖3所示的△AC′D,連接CC′,取CC'的中點(diǎn)F,連精AF并延長(zhǎng)到點(diǎn)G,使FGAF,連接CGC′G,得到四邊形ACGC′,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC沿著BD方向平移,使點(diǎn)B與點(diǎn)A重合,此時(shí)A點(diǎn)平移至A′點(diǎn),A′CBC′相交于點(diǎn)H.如圖4所示,連接CC',試求CH的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知Rt△ABC中,∠C=90°.

(1)已知 a=4, b=2,求 c ;

(2)已知∠A=60°, c=2+4,求 b ;

(3)已知 a =10, c =10,求∠B;

(4)已知 b =35,∠A=45°,求 a .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)OAECF

(1)求證:BOE≌△DOF;

(2)若BDEF,連接DE、BF,判斷四邊形EBFD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,將矩形ABCD折疊,使BC落在對(duì)角線(xiàn)BD上,折痕為BE,點(diǎn)C落在點(diǎn)C'處,若∠ADB=46°,則∠DBE的度數(shù)為______.

(2)小明手中有一張矩形紙片ABCD,AB=4,AD=9

(畫(huà)一畫(huà))

如圖2,點(diǎn)E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線(xiàn)上,折痕設(shè)為MN(點(diǎn)M,N分別在邊ADBC),利用直尺和圓規(guī)畫(huà)出折痕MN(不寫(xiě)作法,保留作圖痕跡,并用黑色水筆把線(xiàn)段描清楚);

(算一算)

如圖3,點(diǎn)F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線(xiàn)FD上,折痕為GF,點(diǎn)A,B分別落在點(diǎn)A',B'處,若AG=,求B'D的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B30°,邊AB的垂直平分線(xiàn)分別交ABBC于點(diǎn)D,E,且AE平分∠BAC

1)求∠C的度數(shù);

2)若CE1,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案