由示意圖可見,拋物線y=x2 +px+q   ①若有兩點A(a,yl)、B(b,y2)(其中a<b)在x軸下方,則拋物線必與x軸有兩個交點C(x1,O)、D(x2,O)(其中xl<x2),且滿足xl<a<b<x2.當A(1,- 2.005),且xl、x2均為整數(shù)時,求二次函數(shù)的表達式,
y=x2+2002x-4008;y=x2+2006x;y=x2+394x-2004;y=x2+398x-1608.

試題分析:∵x1+x2=-p,x1•x2=q, ∴A點(1,-2005)代入方程,p和q用x1和x2代換整理得,
-2005=(1-x1)(1-x2).
由xl、x2為整數(shù),且2 005=5×401得
;;;
分別解得:x1=-2004,x2=2,則y=x2+2002x-4008;x1=0,x2=2006,則y=x2+2006x;
x1=-400,x2=6,則y=x2+394x-2004;x1=-4,x2=402,則y=x2+398x-1608.
經(jīng)檢驗,所求的拋物線有以下4條:
y=x2+2002x-4008;y=x2+2006x;y=x2+394x-2004;y=x2+398x-1608.
點評:本題難度中等,主要考查學生對二次函數(shù)知識點的掌握與綜合運用能力。把A點坐標代入兩點式為解題關(guān)鍵。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(2013年四川眉山11分)如圖,在平面直角坐標系中,點A、B在x軸上,點C、D在y軸上,且OB=OC=3,OA=OD=1,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點,直線AD與拋物線交于另一點M.

(1)求這條拋物線的解析式;
(2)P為拋物線上一動點,E為直線AD上一動點,是否存在點P,使以點A、P、E為頂點的三角形為等腰直角三角形?若存在,請求出所有點P的坐標;若不存在,請說明理由.
(3)請直接寫出將該拋物線沿射線AD方向平移個單位后得到的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達式為   ,其中自變量x的取值范圍是   
(2)若當天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若拋物線y=x2+bx+c與x軸只有一個交點,且過點A(m,n),B(m+6,n),則n=     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點C的坐標為(0,3)它的對稱軸是直線

(1)求拋物線的解析式;
(2)M是線段AB上的任意一點,當△MBC為等腰三角形時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(-2,-5)、(1,4).
(1)求這個二次函數(shù)的解析式;
(2)不用列表,在下圖中畫出函數(shù)圖象,觀察圖象寫出y > 0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為4,對稱中心為點P,點F為BC邊上一個動點,點E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關(guān)于直線AC成軸對稱,設(shè)它們的面積和為S1

(1)求證:∠APE=∠CFP;
(2)設(shè)四邊形CMPF的面積為S2,CF=x,
①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
②當圖中兩塊陰影部分圖形關(guān)于點P成中心對稱時,求y的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把拋物線的圖象向右平移3個單位,再向下平移2個單位,所得圖象的解析式為,則(    ).
A.12   B.9C.  D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正確結(jié)論的個數(shù)是(  。
A.1B.2 C.3 D.4

查看答案和解析>>

同步練習冊答案