【題目】如圖所示,已知二次函數(shù)yax2+bx+c的圖象與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x1.直線y=﹣x+c與拋物線yax2+bx+c交于C、D兩點(diǎn),則下列結(jié)論:

abc0

ab+c0;

③2a+b+c0;

x(ax+b)a+b;

其中正確的有_____

【答案】②③④

【解析】

根據(jù)二次函數(shù)系數(shù)與圖像的關(guān)系即可求解.

∵對(duì)稱軸x1

b=﹣2a,

由圖可知c0,a0,

abc0,不正確;

當(dāng)x=﹣1時(shí),y0,

ab+c0;正確;

③2a+b+c2a2a+cc0;正確;

當(dāng)x1時(shí),函數(shù)y有最大值a+b+c,

x(ax+b)+ca+b+c,

x(ax+b)a+b;正確;

故答案為②③④;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線ABykx1分別交x軸、y軸于點(diǎn)A、B,直線CDyx+2分別交x軸、y軸于點(diǎn)D、C,且直線AB、CD交于點(diǎn)E,E的橫坐標(biāo)為﹣6

(1)如圖①,求直線AB的解析式;

(2)如圖②,點(diǎn)P為直線BA第一象限上一點(diǎn),過(guò)Py軸的平行線交直線CDG,交x軸于F,在線段PG取點(diǎn)N,在線段AF上取點(diǎn)Q,使GNQF,在DG上取點(diǎn)M,連接MNQN,若∠GMN=∠QNF,求的值;

(3)(2)的條件下,點(diǎn)E關(guān)于x軸對(duì)稱點(diǎn)為T,連接MPTQ,若MPTQ,且GNNP43,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過(guò)邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.

(1)求證:BD是⊙O的切線.

(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.

填空:

①當(dāng)的長(zhǎng)度是____________時(shí),四邊形ABDE是菱形;

②當(dāng)的長(zhǎng)度是____________時(shí),△ADE是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC為等腰直角三角形,∠ACB90°,ACBC,點(diǎn)DE分別是AC、AB上的點(diǎn),CEBD,垂足為F

1

①求證:DAC的中點(diǎn);②計(jì)算的值.

2)若,如圖2,則   (直接寫(xiě)出結(jié)果,用k的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(diǎn)(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)BBNMPDC于點(diǎn)N.

(1)求證:AD2=DPPC;

(2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由;

(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的頂點(diǎn)Ax軸上,頂點(diǎn)Cy軸上,DBC的中點(diǎn),過(guò)點(diǎn)D的反比例函數(shù)圖象交ABE點(diǎn),連接DE.若OD5,tanCOD

(1)求過(guò)點(diǎn)D的反比例函數(shù)的解析式;

(2)求△DBE的面積;

(3)x軸上是否存在點(diǎn)P使△OPD為直角三角形?若存在,請(qǐng)直接寫(xiě)出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考將近,同學(xué)們需要花更多的時(shí)間來(lái)進(jìn)行自我反思和總結(jié),消化白天的學(xué)習(xí)內(nèi)容,提高學(xué)習(xí)效率.因此,每個(gè)班都在積極地進(jìn)行自我調(diào)整.我校班和班的同學(xué)也積極響應(yīng)號(hào)召,調(diào)查了本班的自習(xí)情況以供老師參考.

班同學(xué)在班級(jí)抽樣調(diào)查中,調(diào)查了十名同學(xué)的學(xué)習(xí)情況,將這十名同學(xué)在一周內(nèi)每天用于自主復(fù)習(xí)的總時(shí)間四舍五入后,分別記錄如下:(單位:分)

班的同學(xué)采取的普查方式,讓每位同學(xué)自己寫(xiě)出平均每天的自主復(fù)習(xí)時(shí)間,將數(shù)據(jù)收集整理后得到以下數(shù)據(jù).

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

班的同學(xué)還將自主復(fù)習(xí)時(shí)間分為四大類:第一類為時(shí)間小于分鐘以下,第二類為時(shí)間大于或等于分鐘且小于分鐘,第三類為時(shí)間大于或等于分鐘且小于分鐘,第四類為時(shí)間大于或等于分鐘,并得到如下的扇形圖.

1)在扇形圖中,第一類所對(duì)的圓心角度數(shù) .

2)寫(xiě)出班被調(diào)查同學(xué)的以下特征數(shù).

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

3)從上面的數(shù)據(jù),我們可以得到 班的自主復(fù)習(xí)情況要好一些,其理由為(至少兩條):

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南京市某花卉種植基地欲購(gòu)進(jìn)甲、乙兩種蘭花進(jìn)行培育,每株甲種蘭花的成本比每株乙種蘭花的成本多100元,且用1200元購(gòu)進(jìn)的甲種蘭花與用900元購(gòu)進(jìn)的乙種蘭花數(shù)量相同.

1)求甲、乙兩種蘭花每株成本分別為多少元?

2)該種植基地決定在成本不超過(guò)30000元的前提下培育甲、乙兩種蘭花,若培育乙種蘭花的株數(shù)比甲種蘭花的3倍還多10株,求最多購(gòu)進(jìn)甲種蘭花多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)實(shí)社會(huì)中,塑料袋仍然是白色污染的一部分,為了解塑料袋的使用情況,某校八年級(jí)環(huán)保小組隨機(jī)抽取幸福小區(qū)”40戶居民家庭,記錄了這些家庭某個(gè)月丟棄塑料袋的數(shù)量(單位:個(gè))如下:

29 39 35 39 39 27 33 35 31 31

32 32 34 31 33 39 38 40 38 42

31 31 38 31 39 27 33 35 40 38

29 39 35 33 39 39 38 42 37 32

請(qǐng)根據(jù)上述數(shù)據(jù),解答以下問(wèn)題:

1)若數(shù)據(jù)為x,按組距為5”列出了如下的頻數(shù)分布表,請(qǐng)將表中空缺的部分補(bǔ)充完整,并補(bǔ)全頻數(shù)分布直方圖;

分組

頻數(shù)

A25≤x30

4

B30≤x35

14

C35≤x40

D40≤x45

4

合計(jì)

40

2)根據(jù)(1)中的直方圖可以看出,這40戶居民家庭這個(gè)月丟棄塑料袋的個(gè)數(shù)在   組的家庭最多;(填分組序號(hào))

3)根據(jù)頻數(shù)分布表,畫(huà)出了如圖所示的扇形統(tǒng)計(jì)圖,請(qǐng)求出C組對(duì)應(yīng)的扇形圓心角的度數(shù);

4)若該小區(qū)共有1000戶居民家庭,請(qǐng)你估計(jì)每月丟棄的塑料袋數(shù)量不小于30個(gè)的家庭戶數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案