【題目】觀察下面三行數(shù)
表示出每行數(shù)的第個(gè)數(shù),并計(jì)算這三個(gè)數(shù)的和;
表示出每行數(shù)的第個(gè)數(shù).
【答案】(1)4098;(2);;.
【解析】
(1)觀察第一行數(shù)得到后面一個(gè)數(shù)是前一個(gè)數(shù)的-2倍,由此得出第一行的第n個(gè)數(shù);觀察發(fā)現(xiàn)同位置的第二行數(shù)比第一行數(shù)大1,同位置的第三行數(shù)是第一行數(shù)的2倍大1.;根據(jù)各行的表達(dá)式求出第10個(gè)數(shù),然后相加即可得解.
(2)根據(jù)(1)中發(fā)現(xiàn)的規(guī)律,即可解答.
解:(1)每行數(shù)的第個(gè)數(shù)分別為;;,
三個(gè)數(shù)和=
答:三個(gè)數(shù)的和等于4098.
觀察第一行數(shù)得到后面一個(gè)數(shù)是前一個(gè)數(shù)的-2倍,由此得出第一行的第n個(gè)數(shù)為;觀察發(fā)現(xiàn)同位置的第二行數(shù)比第一行數(shù)大1,第二行的第n個(gè)數(shù)為,同位置的第三行數(shù)是第一行數(shù)的2倍大1.;第三行的第n個(gè)數(shù)為.
∴每行數(shù)的第個(gè)數(shù)分別為;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2011次運(yùn)動后,動點(diǎn)P的坐標(biāo)是____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(1,0)、點(diǎn)B在y軸上,將三角形OAB沿x軸負(fù)方向平移,平移后的圖形為三角形DEC,且點(diǎn)C的坐標(biāo)為(﹣3,2).
(1)直接寫出點(diǎn)E的坐標(biāo) ;
(2)在四邊形ABCD中,點(diǎn)P從點(diǎn)B出發(fā),沿“BC→CD”移動.若點(diǎn)P的速度為每秒1個(gè)單位長度,運(yùn)動時(shí)間為t秒,回答下列問題:
①當(dāng)t= 秒時(shí),點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù);
②求點(diǎn)P在運(yùn)動過程中的坐標(biāo),(用含t的式子表示,寫出過程);
③當(dāng)3秒<t<5秒時(shí),設(shè)∠CBP=x°,∠PAD=y°,∠BPA=z°,試問 x,y,z之間的數(shù)量關(guān)系能否確定?若能,請用含x,y的式子表示z,寫出過程;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第二、四象限的A,B兩點(diǎn),與x軸交于C點(diǎn).已知A(-2,m),B(n,-2),tan ∠BOC=,則此一次函數(shù)的解析式為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象分別與x軸,y軸的正半軸交于點(diǎn)E、F,一次函數(shù)y=kx﹣4的圖象與直線EF交于點(diǎn)A(m,2),且交于x軸于點(diǎn)P,
(1)求m的值及點(diǎn)E、F的坐標(biāo);
(2)求△APE的面積;
(3)若B點(diǎn)是x軸上的動點(diǎn),問在直線EF上,是否存在點(diǎn)Q(Q與A不重合),使△BEQ與△APE全等?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點(diǎn)O,BE平分∠ABC交AC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘核潛艇在海面DF下600米A點(diǎn)處測得俯角為30°正前方的海底C點(diǎn)處有黑匣子,繼續(xù)在同一深度直線航行2000米到B點(diǎn)處測得正前方C點(diǎn)處的俯角為45°.求海底C點(diǎn)處距離海面DF的深度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場普通門票價(jià)格40元/張,為了促銷,新推出兩種辦卡方式:
①白金卡售價(jià)200元/張,每次憑卡另收取20元;
②鉆石卡售價(jià)1000元/張,每次憑卡不再收費(fèi).
促銷期間普通門票正常出售,兩種優(yōu)惠卡不限次數(shù),設(shè)去游樂場玩x次時(shí),所需總費(fèi)用為y元.
(1)分別寫出選擇白金卡、普通門票消費(fèi)時(shí),y與x之間的函數(shù)關(guān)系式.
(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對應(yīng)的函數(shù)圖象如圖所示,請求出點(diǎn)B,C的坐標(biāo).
(3)請根據(jù)圖象,直接寫出選擇哪種消費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠C=90°,D是BC邊上一點(diǎn),AC=6,CD=3,∠ADC=α.
(1)試寫出α的正弦、余弦、正切這三個(gè)函數(shù)值;
(2)若∠B與∠ADC互余,求BD及AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com