【題目】已知:矩形ABCD中,AB=4,BC=3,點(diǎn)M、N分別在邊AB、CD上,直線MN交矩形對(duì)角線 AC于點(diǎn)E,將AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,且點(diǎn)P在射線CB.

(1)如圖1,當(dāng)EPBC時(shí),求CN的長(zhǎng);

(2) 如圖2,當(dāng)EPAC時(shí),求AM的長(zhǎng);

(3) 請(qǐng)寫出線段CP的長(zhǎng)的取值范圍,及當(dāng)CP的長(zhǎng)最大時(shí)MN的長(zhǎng).

【答案】(1);(2);(3).

【解析】試題分析:根據(jù)折疊的性質(zhì),得出,推出設(shè) 根據(jù)正弦即可求得CN的長(zhǎng).

根據(jù)折疊的性質(zhì),結(jié)合三角函數(shù)和勾股定理求出AM的長(zhǎng).

直接寫出線段CP的長(zhǎng)的取值范圍,求得MN的長(zhǎng).

試題解析:(1)∵沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,

,

ABCD是矩形,

AB// EP,

ABCD是矩形,∴AB// DC.∴

設(shè)

ABCD是矩形,

,∴ ,∴,即

2)∵沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,∴ ,

.∴

,.∴

,

中,∵,

.∴

30≤CP≤5,當(dāng)CP最大時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.

(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長(zhǎng)度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;

(2)求小彬家與學(xué)校之間的距離;

(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為幾何學(xué)的基石.中國(guó)是發(fā)現(xiàn)和研究勾股定理最古老的國(guó)家之一.中國(guó)古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理.三國(guó)時(shí)期吳國(guó)趙爽創(chuàng)制了勾股圓方圖(如圖)證明了勾股定理.在這幅勾股圓方圖中,大正方形ABCD是由4個(gè)全等的直角三角形再加上中間的那個(gè)小正方形EFGH組成的.若小正方形的邊長(zhǎng)是1,每個(gè)直角三角形的短的直角邊長(zhǎng)是3,則大正方形ABCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( 。

①最大的負(fù)整數(shù)是﹣1;②數(shù)軸上表示數(shù)2 和﹣2的點(diǎn)到原點(diǎn)的距離相等;③當(dāng)a≤0時(shí),|a|=﹣a成立;④a的倒數(shù)是;(﹣2)2 和﹣22相等.

A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列條件中,不能判定一個(gè)四邊形是平行四邊形的是( 。

A. 兩組對(duì)邊分別平行B. 一組對(duì)邊平行且相等C. 兩組對(duì)角分別相等 D. 一組對(duì)邊相等且一組對(duì)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l經(jīng)過(guò)⊙O的圓心O,且與⊙O交于AB兩點(diǎn),點(diǎn)C⊙O上,且∠AOC30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP⊙O相交于另一點(diǎn)Q,如果QPQO,則∠OCP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一面靠墻的空地上,用長(zhǎng)為24米的籬笆圍成中間隔有二道籬笆的長(zhǎng)方形花圃,從設(shè)計(jì)的美觀角度出發(fā),墻的最小可用長(zhǎng)度為4米,墻的最大可用長(zhǎng)度為14米.

(1)若所圍成的花圃的面積為32平方米,求花圃的寬AB的長(zhǎng)度;

(2)當(dāng)AB的長(zhǎng)為   時(shí),所圍成的花圃面積最大,最大值為   2;當(dāng)AB的長(zhǎng)為   時(shí),所圍成的花圃面積最小,最小值為   2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AFBF.

1)求證:四邊形BFDE是矩形;

2)若CF3,BF4DF5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形ABCD中,ADBC,AD=7,AB=CD=15,BC=25,E為腰AB上一點(diǎn)且AE:BE=1:2,F(xiàn)為BC一動(dòng)點(diǎn),∠FEG=∠B,EG交射線BC于G,直線EG交射線CA于H.

(1)求sin∠ABC;

(2)求BAC的度數(shù);

(3)設(shè)BF=x,CH=y,求y與x的函數(shù)關(guān)系式及其定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案