【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時(shí)時(shí)間,在每條線路上隨機(jī)選取了450個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:早高峰期間,乘坐______(填“3路”,“121路”或“26路”)線路上的公交車,從謝家集到田家庵“用時(shí)不超過50分鐘”的可能性最大.
用時(shí) | 合計(jì)(頻次) | |||
線路 | ||||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
【答案】3路
【解析】
只涉及一步實(shí)驗(yàn)的隨機(jī)事件發(fā)生的概率,如:根據(jù)概率的大小與面積的關(guān)系,對(duì)一類概率模型進(jìn)行的計(jì)算;第二種:通過列表法、列舉法、樹狀圖來計(jì)算涉及兩步或兩步以上實(shí)驗(yàn)的隨機(jī)事件發(fā)生的概率.
3路從謝家集到田家庵“用時(shí)不超過50分鐘”的概率 ,
121路從謝家集到田家庵“用時(shí)不超過50分鐘”的概率 ,
26路從謝家集到田家庵“用時(shí)不超過50分鐘”的概率
所以3路從謝家集到田家庵“用時(shí)不超過50分鐘”的可能性最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開挖后甲、乙兩隊(duì)所挖河渠長度相等時(shí),x=4.其中一定正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.
(1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?
(2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,請(qǐng)你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB中,∠ABO=90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸正半軸上,若雙曲線y=(x>0)與△OAB的邊AO、AB分別交于點(diǎn)C、D,點(diǎn)C為AO的中點(diǎn),連接OD、CD.若S△OBD=3,則S△OCD為( 。
A.3B.4C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解社區(qū)居民最喜歡的支付方式,某興趣小組對(duì)龍湖社區(qū)內(nèi)20~60歲年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該社區(qū)中20~60歲的居民約4000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=2x的圖象與反比例函數(shù)y=(x>0),y=(x>0)的圖象分別交于P,Q兩點(diǎn),點(diǎn)P為OQ的中點(diǎn),Rt△ABC的直角頂點(diǎn)A是雙曲線y=(x>0)上一動(dòng)點(diǎn),頂點(diǎn)B,C在雙曲線y=(x>0)上,且兩直角邊均與坐標(biāo)軸平行.
(1)直接寫出k的值;
(2)△ABC的面積是否變化?若不變,求出△ABC的面積;若變化,請(qǐng)說明理由;
(3)直線y=2x是否存在點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線y=-x+6分別于x軸、y軸交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)E為線段OB上一動(dòng)點(diǎn)(不與O、B重合),CE的延長線與AB交于點(diǎn)D,過A、D、E三點(diǎn)的圓與y軸交于點(diǎn)F
(1)求A、B、C三點(diǎn)的坐標(biāo)
(2)求證:BE·EF=DE·AE
(3)若tan∠BAE=,求點(diǎn)F的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù) .
(3)請(qǐng)估計(jì)全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com