【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時(shí)時(shí)間,在每條線路上隨機(jī)選取了450個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:早高峰期間,乘坐______(填“3路”,“121路”或“26路”)線路上的公交車,從謝家集到田家庵“用時(shí)不超過50分鐘”的可能性最大.

用時(shí)

合計(jì)(頻次)

線路

3

260

167

23

450

121

160

166

124

450

26

50

122

278

450

【答案】3

【解析】

只涉及一步實(shí)驗(yàn)的隨機(jī)事件發(fā)生的概率,如:根據(jù)概率的大小與面積的關(guān)系,對(duì)一類概率模型進(jìn)行的計(jì)算;第二種:通過列表法、列舉法、樹狀圖來計(jì)算涉及兩步或兩步以上實(shí)驗(yàn)的隨機(jī)事件發(fā)生的概率.

3路從謝家集到田家庵用時(shí)不超過50分鐘的概率
121路從謝家集到田家庵用時(shí)不超過50分鐘的概率 ,
26路從謝家集到田家庵用時(shí)不超過50分鐘的概率

所以3路從謝家集到田家庵用時(shí)不超過50分鐘的可能性最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開挖后甲、乙兩隊(duì)所挖河渠長度相等時(shí),x=4.其中一定正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,請(qǐng)你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB中,∠ABO90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AO、AB分別交于點(diǎn)CD,點(diǎn)CAO的中點(diǎn),連接ODCD.若SOBD3,則SOCD為( 。

A.3B.4C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解社區(qū)居民最喜歡的支付方式,某興趣小組對(duì)龍湖社區(qū)內(nèi)20~60歲年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問題:

1)求參與問卷調(diào)查的總?cè)藬?shù).

2)補(bǔ)全條形統(tǒng)計(jì)圖.

3)該社區(qū)中20~60歲的居民約4000人,估算這些人中最喜歡微信支付方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y2x的圖象與反比例函數(shù)yx0),yx0)的圖象分別交于P,Q兩點(diǎn),點(diǎn)POQ的中點(diǎn),RtABC的直角頂點(diǎn)A是雙曲線yx0)上一動(dòng)點(diǎn),頂點(diǎn)B,C在雙曲線yx0)上,且兩直角邊均與坐標(biāo)軸平行.

1)直接寫出k的值;

2)△ABC的面積是否變化?若不變,求出△ABC的面積;若變化,請(qǐng)說明理由;

3)直線y2x是否存在點(diǎn)D,使得以A,B,C,D為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線y=-x+6分別于x軸、y軸交于A、B兩點(diǎn),點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)E為線段OB上一動(dòng)點(diǎn)(不與O、B重合),CE的延長線與AB交于點(diǎn)D,過A、D、E三點(diǎn)的圓與y軸交于點(diǎn)F

(1)求A、B、C三點(diǎn)的坐標(biāo)

(2)求證:BE·EF=DE·AE

(3)若tan∠BAE=,求點(diǎn)F的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:,

1)請(qǐng)找出圖中一對(duì)全等的三角形,并說明理由;

2)若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟(jì)南某中學(xué)在參加“創(chuàng)文明城,點(diǎn)贊泉城”書畫比賽中,楊老師從全校30個(gè)班中隨機(jī)抽取了4個(gè)班(用A,B,C,D表示),對(duì)征集到的作鼎的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中C班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù)   

(3)請(qǐng)估計(jì)全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎(jiǎng)的作者中選取兩人參加表彰座談會(huì),請(qǐng)你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.

查看答案和解析>>

同步練習(xí)冊答案