精英家教網 > 初中數學 > 題目詳情
25、如圖,已知PB⊥BA,PC⊥CA,且PB=PC,D是PA上的一點,求證:BD=CD.
分析:先利用HL判定Rt△PAB≌Rt△PAC,得出∠APB=∠APC,再利用SAS判定△PBD≌△PCD,從而得出BD=CD.
解答:證明:∵PB⊥BA,PC⊥CA,
在Rt△PAB,Rt△PAC中,
∵PB=PC,PA=PA,
∴Rt△PAB≌Rt△PAC,
∴∠APB=∠APC,
又D是PA上一點,PD=PD,PB=PC,
∴△PBD≌△PCD,
∴BD=CD.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知∠ABC和射線BD上一點P(點P與點B不重合),且點P到BA、BC的距離為PE、PF.
(1)若∠EBP=40°,∠FBP=20°,PB=m,試比較PE、PF的大小;
(2)若∠EBP=α,∠FBP=β,α,β都是銳角,且α>β.試判斷PE、PF的大小,并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c過A(3,3.5)、B(4,2)、C(0,2)三點,點P是x軸上的動點.
(1)求拋物線的解析式;
(2)如圖甲所示,連接AC、CP、PB、BA,是否存在點P,使四邊形ABPC為等腰梯形?若存在,求出點P的坐標;若不存在,說明理由;
(3)點H是題中拋物線對稱軸l上的動點,如圖乙所示,求四邊形AHPB周長的最小值.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•義烏市)如圖,已知點A(0,2)、B(2
3
,2)、C(0,4),過點C向右作平行于x軸的射線,點P是射線上的動點,連接AP,以AP為邊在其左側作等邊△APQ,連接PB、BA.若四邊形ABPQ為梯形,則:
(1)當AB為梯形的底時,點P的橫坐標是
2
3
3
2
3
3
;
(2)當AB為梯形的腰時,點P的橫坐標是
0或2
3
0或2
3

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知PB⊥BA,PC⊥CA,且PB=PC,D是PA上的一點,求證:BD=CD.

查看答案和解析>>

同步練習冊答案