【題目】已知點(diǎn)P是Rt△ABC斜邊AB所在直線上的一個(gè)不與A、B重合的動(dòng)點(diǎn),分別過(guò)A、B向直線CP作垂線,垂足分別為E、F,點(diǎn)Q為斜邊AB的中點(diǎn)
(1)當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是 ,QE與QF的數(shù)量關(guān)系是 ,并說(shuō)明理由;
(2)當(dāng)點(diǎn)P不與點(diǎn)Q重合時(shí),判斷QE與QF的數(shù)量關(guān)系并給予證明.
【答案】(1)AE∥BF, QE=QF,理由見(jiàn)解析;(2)①當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),QE=QF,證明見(jiàn)解析;②當(dāng)點(diǎn)P在線段BA(或AB)的延長(zhǎng)線上時(shí),結(jié)論QE=QF成立,證明見(jiàn)解析.
【解析】
(1)根據(jù)AAS推出△AEQ≌△BFQ,推出AE=BF即可;
(2)延長(zhǎng)EQ交BF于D,求出△AEQ≌△BDQ,根據(jù)全等三角形的性質(zhì)得出EQ=QD,根據(jù)直角三角形斜邊上中點(diǎn)性質(zhì)得出即可;延長(zhǎng)EQ交FB于D,求出△AEQ≌△BDQ,根據(jù)全等三角形的性質(zhì)得出EQ=QD,根據(jù)直角三角形斜邊上中點(diǎn)性質(zhì)得出即可.
解:(1)如圖1,
當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是AE∥BF,QE與QF的數(shù)量關(guān)系是QE=QF,
理由是:∵Q為AB的中點(diǎn),∴AQ=BQ,
∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,
∴△AEQ≌△BFQ(AAS),
∴QE=QF,
故答案為:AE∥BF,QE=QF;
(2)①當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),QE=QF,
證明:延長(zhǎng)EQ交BF于D,如圖2,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,又∠AQE=∠BQD,AQ=BQ,
∴△AEQ≌△BDQ(AAS),
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF;
②當(dāng)點(diǎn)P在線段BA(或AB)的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論成立,
證明:延長(zhǎng)EQ交FB于D,如圖3,
∵由(1)知:AE∥BF,
∴∠AEQ=∠BDQ,
又,∠AQE=∠BQD,AQ=BQ,
∴△AEQ≌△BDQ(AAS),
∴EQ=DQ,
∵∠BFE=90°,
∴QE=QF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長(zhǎng)方形,點(diǎn)A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿O→C→B→A運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.則當(dāng)t=____秒時(shí),△ODP是腰長(zhǎng)為5的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD之間有一景觀池,小雙在A點(diǎn)測(cè)得池中噴泉處E點(diǎn)的俯角為42°,在C點(diǎn)測(cè)得E點(diǎn)的俯角為45°,點(diǎn)B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫(huà)圓,P是⊙O上一動(dòng)點(diǎn)且在第一象限內(nèi),過(guò)點(diǎn)P作⊙O的切線,與x、y軸分別交于點(diǎn)A、B.
(1)求證:△OBP與△OPA相似;
(2)當(dāng)點(diǎn)P為AB中點(diǎn)時(shí),求出P點(diǎn)坐標(biāo);
(3)在⊙O上是否存在一點(diǎn)Q,使得以Q,O,A、P為頂點(diǎn)的四邊形是平行四邊形.若存在,試求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,⊙M的半徑為2,圓心M的坐標(biāo)為(3,4),點(diǎn)P是⊙M上的任意一點(diǎn),PA⊥PB,且PA、PB與x軸分別交于A、B兩點(diǎn),若點(diǎn)A、點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,則AB的最小值為( 。
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在實(shí)施“棚戶區(qū)”改造工程中,我市計(jì)劃推出、兩種新戶型.根據(jù)預(yù)算,建成10套種戶型和30套種戶型住房共需資金2790萬(wàn)元,建成30套種戶型和10套種戶型住房共需資金2130萬(wàn)元.
(1)在危舊房改造中建成一套種戶型和一套種戶型住房所需資金分別是多少萬(wàn)元?
(2)河西區(qū)有200套住房需要改造,改造資金由國(guó)家危舊房補(bǔ)貼和地方財(cái)政共同承擔(dān),若國(guó)家危舊房補(bǔ)貼撥付的改造資金不超過(guò)6560萬(wàn)元,地方財(cái)政投入額資金不少于5050萬(wàn)元,其中國(guó)家危舊房補(bǔ)貼投入到、兩種戶型的改造資金分別為每套27萬(wàn)元和40萬(wàn)元
①請(qǐng)你設(shè)計(jì)出改造方案:
②設(shè)這項(xiàng)改造工程總投入資金萬(wàn)元,建成種戶型套,寫(xiě)出與的關(guān)系式,并求出最少總投入.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)C重合)對(duì)角線AC與BD相交于點(diǎn)O,連接AE,交BD于點(diǎn)G.
(1)根據(jù)給出的△AEC,作出它的外接圓⊙F,并標(biāo)出圓心F(不寫(xiě)作法和證明,保留作圖痕跡);
(2)在(1)的條件下,連接EF.①求證:∠AEF=∠DBC;
②記t=GF2+AGGE,當(dāng)AB=6,BD=6時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·吉林)如圖①,一個(gè)正方體鐵塊放置在圓柱形水槽內(nèi),現(xiàn)以一定的速度往水槽中注水,28s時(shí)注滿水槽.水槽內(nèi)水面的高度y(cm)與注水時(shí)間x(s)之間的函數(shù)圖象如圖②所示.
(1)正方體的棱長(zhǎng)為 cm;
(2)求線段AB對(duì)應(yīng)的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍;
(3)如果將正方體鐵塊取出,又經(jīng)過(guò)t(s)恰好將此水槽注滿,直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點(diǎn) D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)P是AE上一個(gè)動(dòng)點(diǎn),則PF+PB的最小值為___________ 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com