如圖①,一條筆直的公路上有A、B、C三地,B、C兩地相距150千米,甲、乙兩輛汽車分別從B、C兩地同時(shí)出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2(千米)與行駛時(shí)間x(時(shí))的關(guān)系如圖②所示.根據(jù)圖象進(jìn)行以下探究:


(1)請?jiān)趫D①中標(biāo)出A地的位置,并作簡要的文字說明;
(2)求圖②中M點(diǎn)的坐標(biāo),并解釋該點(diǎn)的實(shí)際意義;
(3)在圖②中補(bǔ)全甲車的函數(shù)圖象,求甲車到A地的距離y1與行駛時(shí)間x的函數(shù)關(guān)系式;
(4)A地設(shè)有指揮中心,指揮中心及兩車都配有對講機(jī),兩部對講機(jī)在15千米之內(nèi)(含15千米)時(shí)能夠互相通話,求兩車可以同時(shí)與指揮中心用對講機(jī)通話的時(shí)間.

(1)A地位置見圖形,使點(diǎn)A滿足AB:AC=2:3;
(2)點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地;
(3)圖像見解析,當(dāng)0≤x≤1時(shí),y1=﹣60x+60; 當(dāng)1<x≤2.5時(shí),y1=60x﹣60;
(4)兩車可以同時(shí)與指揮中心用對講機(jī)的時(shí)間為小時(shí).

解析試題分析:(1)作圖后根據(jù)圖示分析可知點(diǎn)A滿足AB:AC=2:3;
(2)直接根據(jù)題意列式可求,乙車的速度150÷2=75千米/時(shí),90÷75=1.2,所以點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地;
(3)根據(jù)圖象可知當(dāng)0≤x≤1時(shí),y1=﹣60x+60;當(dāng)1<x≤2.5時(shí),y1=60x﹣60;
(4)根據(jù)“兩部對講機(jī)在15千米之內(nèi)(含15千米)時(shí)能夠互相通話”作為不等關(guān)系列不等式組,求解即可得到通話的時(shí)間范圍,所以可求兩車同時(shí)與指揮中心通話的時(shí)間為小時(shí).
試題解析:(1)A地位置如圖所示.使點(diǎn)A滿足AB:AC=2:3;

(2)乙車的速度150÷2=75千米/時(shí),90÷75=1.2,∴M(1.2,0),
所以點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地;
(3)甲車的函數(shù)圖象如圖所示:

當(dāng)0≤x≤1時(shí),y1=﹣60x+60;
當(dāng)1<x≤2.5時(shí),y1=60x﹣60;
(4)據(jù)題意得,解得,
,解得
∴兩車可以同時(shí)與指揮中心用對講機(jī)的時(shí)間為小時(shí).
考點(diǎn):一次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)
1≤x<50
50≤x≤90
售價(jià)(元/件)
x+40
90
每天銷量(件)
200-2x
 
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C在線段AB上,且
(1)求點(diǎn)C的坐標(biāo)(用含有m的代數(shù)式表示);
(2)將△AOC沿x軸翻折,當(dāng)點(diǎn)C的對應(yīng)點(diǎn)C′恰好落在拋物線上時(shí),求該拋物線的表達(dá)式;
(3)設(shè)點(diǎn)M為(2)中所求拋物線上一點(diǎn),當(dāng)以A、O、C、M為頂點(diǎn)的四邊形為平行四邊形時(shí),請直接寫出所有滿足條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某城市居民用水實(shí)行階梯收費(fèi),每戶每月用水量如果未超過20噸,按每噸1.9元收費(fèi).如果超過20噸,未超過的部分按每噸1.9元收費(fèi),超過的部分按每噸2.8元收費(fèi).設(shè)某戶每月用水量為x噸,應(yīng)收水費(fèi)為y元.
(1)分別寫出每月用水量未超過20噸和超過20噸,y與x間的函數(shù)關(guān)系式.
(2)若該城市某戶5月份水費(fèi)平均為每噸2.2元,求該戶5月份用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

“節(jié)能環(huán)保,低碳生活”是我們倡導(dǎo)的一種生活方式,某家電商場計(jì)劃用11.8萬元購進(jìn)節(jié)能型電視機(jī)、洗衣機(jī)和空調(diào)共40臺,三種家電的進(jìn)價(jià)和售價(jià)如表所示:

價(jià)格種類
進(jìn)價(jià)(元/臺)
售價(jià)(元/臺)
電視機(jī)
5000
5500
洗衣機(jī)
2000
2160
空調(diào)
2400
2700
(1)在不超出現(xiàn)有資金的前提下,若購進(jìn)電視機(jī)的數(shù)量和洗衣機(jī)的數(shù)量相同,空調(diào)的數(shù)量不超過電視機(jī)的數(shù)量的3倍.請問商場有哪幾種進(jìn)貨方案?
(2)在“2012年消費(fèi)促進(jìn)月”促銷活動(dòng)期間,商家針對這三種節(jié)能型產(chǎn)品推出“現(xiàn)金每購1000元送50元家電消費(fèi)券一張、多買多送”的活動(dòng).在(1)的條件下,若三種電器在活動(dòng)期間全部售出,商家預(yù)估最多送出多少張?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+b(k≠ 0)與反比例函數(shù)(m≠0)的圖象有公共點(diǎn)A(1,2),D(a,-1).直線 軸于點(diǎn)N(3,0),與一次函數(shù)和反比例 函數(shù)的圖象分別交于點(diǎn)B,C.

(1) 求一次函數(shù)與反比例函數(shù)的解析式;
(2) 求△ABC的面積。
(3) 根據(jù)圖象回答,在什么范圍時(shí),一次函數(shù)的值大于反比例函數(shù)的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,將底面為正方形的兩個(gè)完全相同的長方體鐵塊放入一圓柱形水槽內(nèi),并向水槽內(nèi)勻速注水,速度為vcm3/s,直至水面與長方體頂面平齊為止.水槽內(nèi)的水深h(cm)與注水時(shí)間t(s)的函數(shù)關(guān)系如圖2所示.根據(jù)圖象完成下列問題:

(1)一個(gè)長方體的體積是           cm3;
(2)求圖2中線段AB對應(yīng)的函數(shù)關(guān)系式;
(3)求注水速度v和圓柱形水槽的底面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù),
(1)為何值時(shí),它的圖象經(jīng)過原點(diǎn);
(2)為何值時(shí),它的圖象經(jīng)過點(diǎn)(0,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司專銷產(chǎn)品,第一批產(chǎn)品上市40天內(nèi)全部售完.該公司對第一批產(chǎn)品上市后的市場銷售情況進(jìn)行了跟蹤調(diào)查,調(diào)查結(jié)果如圖所示,其中圖1中的折線表示的是市場日銷售量與上市時(shí)間的關(guān)系;圖2中的折線表示的是每件產(chǎn)品的銷售利潤與上市時(shí)間的關(guān)系.

(1)試寫出第一批產(chǎn)品的市場日銷售量與上市時(shí)間的關(guān)系式;
(2)第一批產(chǎn)品上市后,哪一天這家公司市場日銷售利潤最大?最大利潤是多少萬元?(說明理由)

查看答案和解析>>

同步練習(xí)冊答案