【題目】1)動(dòng)手操作:

如圖1所示,已知A、B、C三個(gè)點(diǎn)都在網(wǎng)格紙的格點(diǎn)上,∠1是∠ABC的余角,∠2是∠ABC的補(bǔ)角,CDAB于點(diǎn)D,CEAB,試在圖中分別畫(huà)出:∠1、∠2、垂線(xiàn)段CD和直線(xiàn)CE

2)已知:如圖2,點(diǎn)EDF上,點(diǎn)BAC上,∠1=∠2,∠C=∠D,試說(shuō)明:ACDF,請(qǐng)將下面的解答過(guò)程補(bǔ)充完整:

解:∵∠1=∠2(已知)

又∵∠1=∠3

(等量代換)

ECDB

∴∠C (兩直線(xiàn)平行,同位角相等)

∵∠C=∠D(已知)

∴∠D

ACDF

【答案】1)畫(huà)圖見(jiàn)解析;(2)對(duì)頂角相等,∠2=∠3,同位角相等兩直線(xiàn)平行,∠ABD,∠ABD,內(nèi)錯(cuò)角相等兩直線(xiàn)平行

【解析】

1)根據(jù)垂線(xiàn)段、平行線(xiàn)的判定,余角,補(bǔ)角的定義畫(huà)出圖形即可;

2)只要證明∠D=ABD,即可解決問(wèn)題

1)∠1、∠2、垂線(xiàn)段CD和直線(xiàn)CE如圖所示:

2)∵∠1=∠2(已知)

又∵∠1=∠3(對(duì)頂角相等)

∴∠2=∠3(等量代換)

ECDB(同位角相等,兩直線(xiàn)平行)

∴∠C=∠ABD(兩直線(xiàn)平行,同位角相等)

∵∠C=∠D(已知)

∴∠D=∠ABD

ACDF(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)

故答案為:對(duì)頂角相等,∠2=∠3,同位角相等兩直線(xiàn)平行,∠ABD,∠ABD,內(nèi)錯(cuò)角相等兩直線(xiàn)平行;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、bc均為實(shí)數(shù),且a>bc≠0,下列結(jié)論不一定正確的是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,定義點(diǎn)P(x,y)的變換點(diǎn)為P′(x+y,x﹣y).
(1)如圖1,

如果⊙O的半徑為
①請(qǐng)你判斷M(2,0),N(﹣2,﹣1)兩個(gè)點(diǎn)的變換點(diǎn)與⊙O的位置關(guān)系;
②若點(diǎn)P在直線(xiàn)y=x+2上,點(diǎn)P的變換點(diǎn)P′在⊙O的內(nèi),求點(diǎn)P橫坐標(biāo)的取值范圍.
(2)如圖2,如果⊙O的半徑為1,且P的變換點(diǎn)P′在直線(xiàn)y=﹣2x+6上,求點(diǎn)P與⊙O上任意一點(diǎn)距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如:下問(wèn)題
尺規(guī)作圖:過(guò)圓外一點(diǎn)作園的切線(xiàn)
已知:圓O和點(diǎn)P

求作:過(guò)點(diǎn)P的圓O的切線(xiàn)
小涵的主要作法如下:
如圖:①連接OP,作線(xiàn)段OP的中點(diǎn)A
②以A為圓心,OA長(zhǎng)為半徑作圓,交圓O于點(diǎn)B,C
③作直線(xiàn)PB和PC

所以PB和PC就是所求的切線(xiàn)
老師說(shuō):“小涵的作法正確.”
請(qǐng)回答:小涵的作圖依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:三邊長(zhǎng)和面積都是整數(shù)的三角形稱(chēng)為“整數(shù)三角形”.

數(shù)學(xué)學(xué)習(xí)小組的同學(xué)從32根等長(zhǎng)的火柴棒(每根長(zhǎng)度記為1個(gè)單位)中取出若干根,首尾依次相接組成三角形,進(jìn)行探究活動(dòng).

小亮用12根火柴棒,擺成如圖所示的“整數(shù)三角形”;

小穎分別用24根和30根火柴棒擺出直角“整數(shù)三角形”;

小輝受到小亮、小穎的啟發(fā),分別擺出三個(gè)不同的等腰“整數(shù)三角形”.

⑴請(qǐng)你畫(huà)出小穎和小輝擺出的“整數(shù)三角形”的示意圖;

⑵你能否也從中取出若干根,按下列要求擺出“整數(shù)三角形”,如果能,請(qǐng)畫(huà)出示意圖;如果不能,請(qǐng)說(shuō)明理由.

①畫(huà)出等邊“整數(shù)三角形”;

②擺出一個(gè)非特殊(既非直角三角形,也非等腰三角形)“整數(shù)三角形”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】葛藤是一種刁鉆的植物,它的腰桿不硬,為了爭(zhēng)奪雨露陽(yáng)光,常常繞著樹(shù)干盤(pán)旋而上,它還有一手絕招,就是它繞樹(shù)盤(pán)升的路線(xiàn)總是沿最短路線(xiàn)——螺旋前進(jìn)的.

通過(guò)閱讀以上信息,解決下列問(wèn)題:

(1)若樹(shù)干的周長(zhǎng)(即圖中圓柱的底面周長(zhǎng))30cm,葛藤繞一圈升高(即圓柱的高)40cm,則它爬行一圈的路程是多少?

(2)若樹(shù)干的周長(zhǎng)為80cm,葛藤繞一圈爬行100cm,它爬行10圈到達(dá)樹(shù)頂,則樹(shù)干高多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎自行車(chē)上學(xué),某天他從家出發(fā)騎行了一段路程,想起要買(mǎi)一本書(shū),于是折回到他剛經(jīng)過(guò)的某書(shū)店,買(mǎi)到書(shū)后繼續(xù)去學(xué)校.以下是他在本次上學(xué)離家的距離與所用的時(shí)間的關(guān)系示意圖,根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)小明家與學(xué)校的距離是_____米.

(2)小明在書(shū)店停留了多少分鐘?

(3)AB兩題中任選一題作答:

A.小明騎行過(guò)程中哪個(gè)時(shí)間段的速度最快,最快的速度是多少?

B.小明在這次上學(xué)過(guò)程中的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑, ,連結(jié)AC,過(guò)點(diǎn)C作直線(xiàn)l∥AB,點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),直線(xiàn)PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線(xiàn)PB與直線(xiàn)AC交于點(diǎn)E.

(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在A(yíng)B上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中
①當(dāng)點(diǎn)A在線(xiàn)段PB的中垂線(xiàn)上或點(diǎn)B在線(xiàn)段PA的中垂線(xiàn)上時(shí),求出所有滿(mǎn)足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線(xiàn)l的距離為3,連結(jié)BD, DE,直接寫(xiě)出△BDE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案