(2010•廣安)如圖.是一座人行天橋的示意圖,天橋的高是10米,坡面的傾斜角為45°,為了方便行人安全過天橋,市政部門決定降低坡度,使新坡面的傾斜角為30°.若新坡腳前需留2.5米的人行道,問離原坡腳10米的建筑物是否需要拆除?請說明理由.(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】分析:設(shè)建筑物處為E點(diǎn).在Rt△ABC中,根據(jù)坡角∠ACB的度數(shù)和AB的長,可求出AC的長;同理可在Rt△ABD中求出AD的長,由此可求出CD的長,然后再判斷DE的長是否小于2.5米即可,如果小于則說明建筑物需要拆除,反之則不用.
解答:解:如圖:
Rt△ABC中,∠BCA=45°,AB=10,
∴AC=AB=10.
同理可得:AD=10≈17.32.
∴CD=AD-AC=7.32,
DE=CE-CD=10-7.32=2.68>2.5.
故原建筑物不用拆除.
點(diǎn)評:此題主要考查學(xué)生對坡度坡角的掌握及三角函數(shù)的運(yùn)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•廣安)如圖,直線y=-x-1與拋物線y=ax2+bx-4都經(jīng)過點(diǎn)A(-1,0)、C(3,-4).
(1)求拋物線的解析式;
(2)動點(diǎn)P在線段AC上,過點(diǎn)P作x軸的垂線與拋物線相交于點(diǎn)E,求線段PE長度的最大值;
(3)當(dāng)線段PE的長度取得最大值時,在拋物線上是否存在點(diǎn)Q,使△PCQ是以PC為直角邊的直角三角形?若存在,請求出Q點(diǎn)的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•廣安)如圖,若反比例函數(shù)y=-與一次函數(shù)y=mx-2的圖象都經(jīng)過點(diǎn)A(a,2)
(1)求A點(diǎn)的坐標(biāo)及一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與反比例函數(shù)圖象的另一交點(diǎn)為B,求B點(diǎn)坐標(biāo),并利用函數(shù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省廣安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣安)如圖,直線y=-x-1與拋物線y=ax2+bx-4都經(jīng)過點(diǎn)A(-1,0)、C(3,-4).
(1)求拋物線的解析式;
(2)動點(diǎn)P在線段AC上,過點(diǎn)P作x軸的垂線與拋物線相交于點(diǎn)E,求線段PE長度的最大值;
(3)當(dāng)線段PE的長度取得最大值時,在拋物線上是否存在點(diǎn)Q,使△PCQ是以PC為直角邊的直角三角形?若存在,請求出Q點(diǎn)的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省廣安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣安)如圖,若反比例函數(shù)y=-與一次函數(shù)y=mx-2的圖象都經(jīng)過點(diǎn)A(a,2)
(1)求A點(diǎn)的坐標(biāo)及一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與反比例函數(shù)圖象的另一交點(diǎn)為B,求B點(diǎn)坐標(biāo),并利用函數(shù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省廣安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣安)如圖,AB、AC分別是⊙O的直徑和弦,點(diǎn)D為劣弧AC上一點(diǎn),弦DE⊥AB分別交⊙O于E,交AB于H,交AC于F.P是ED延長線上一點(diǎn)且PC=PF.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)D在劣弧AC什么位置時,才能使AD2=DE•DF,為什么?
(3)在(2)的條件下,若OH=1,AH=2,求弦AC的長.

查看答案和解析>>

同步練習(xí)冊答案