精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF. 求證:四邊形BCFE是菱形.

【答案】解:∵BE=2DE,EF=BE, ∴EF=2DE.
∵D、E分別是AB、AC的中點,
∴BC=2DE且DE∥BC.
∴EF=BC.
又EF∥BC,
∴四邊形BCFE是平行四邊形.
又EF=BE,
∴四邊形BCFE是菱形.
【解析】由題意易得,EF與BC平行且相等,∴四邊形BCFE是平行四邊形.又EF=BE,∴四邊形BCFE是菱形.
【考點精析】利用菱形的判定方法對題目進行判斷即可得到答案,需要熟知任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,過C作CE⊥AB于E,并且AE=(AB+AD),求∠ABC+∠ADC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網技術的廣泛應用,催生了快遞行業(yè)的高度發(fā)展,據調查,長沙市某家小型“大學生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數的增長率相同.
(1)求該快遞公司投遞總件數的月平均增長率;
(2)如果平均每人每月最多可投遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成今年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是(
A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個質地均勻的正六面體骰子,向上的面點數是4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八(2)班組織了一次經典誦讀比賽,甲、乙兩隊各10人的比賽成績如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數是 分,乙隊成績的眾數是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,過點D作DE∥AC且DE=OC,連接CE,OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為4,∠ABC=60°,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD是△ABC的邊BC的中線,EAD的中點,過點AAFBC,交BE的延長線于點F,連接CF,BFACG.

(1)若四邊形ADCF是菱形,試證明△ABC是直角三角形;

(2)求證:CG=2AG.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果,矩形ABCD中,點E在AB上,點F在CD上,點G,H在對角線AC上,且CH=AG,CF=AE.
(1)求證:△AGE≌△CHF;
(2)若AB=8,AD=4,且GH恰好平分∠FGE,求CF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了解九年級學生的體重情況,隨機抽取了九年級部分學生進行調查,將抽取學生的體重情況繪制如下不完整的統(tǒng)計圖表,如圖表所示,請根據圖表信息回答下列問題:

體重頻數分布表

組邊

體重(千克)

人數

A

45≤x<50

12

B

50≤x<55

m

C

55≤x<60

80

D

60≤x<65

40

E

65≤x<70

16

(1)填空:①m=__(直接寫出結果);

在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數等于__度;

(2)如果該校九年級有1000名學生,請估算九年級體重低于60千克的學生大約有多少人?

查看答案和解析>>

同步練習冊答案