【題目】如圖,平分.將一塊足夠大的三角尺的直角頂點(diǎn)落在射線(xiàn)的任意一點(diǎn)上,并使三角尺的一條直角邊與(的延長(zhǎng)線(xiàn))交于點(diǎn),另一條直角邊與交于點(diǎn).

(1)如圖1,當(dāng)與邊垂直時(shí),證明:;

(2)如圖2,把三角尺繞點(diǎn)旋轉(zhuǎn),三角尺的兩條直角邊分別交于點(diǎn),在旋轉(zhuǎn)過(guò)程中,相等嗎?請(qǐng)直接寫(xiě)出結(jié)論: (,,),

(3)如圖3,三角尺繞點(diǎn)繼續(xù)旋轉(zhuǎn),三角尺的一條直角邊與的延長(zhǎng)線(xiàn)交于點(diǎn),另一條直角邊與交于點(diǎn).在旋轉(zhuǎn)過(guò)程中,相等嗎?若相等,請(qǐng)給出證明;若不相等,請(qǐng)說(shuō)明理由.

【答案】1)證明過(guò)程見(jiàn)解析;(2)=;(3)相等,證明過(guò)程見(jiàn)解析.

【解析】

1)證明DPOEPO,即可得出答案;

2PD=PE;

3)作PM垂直AOM,PN垂直OBN,證明PMDPNE,即可得出答案.

1)證明:∵,平分

∴∠DOP=POE=45°

又∵,與邊垂直

OEPD

∴∠POE=OPD=45°

又∠DOE=90°

∴∠OPE=45°

DPOEPO

DPOEPOASA

PD=PE

2PD=PE

3

相等

證明:作PM垂直AOM,PN垂直OBN

∴∠PMD=PNE=90°,MPN=90°

平分

PM=PN

又∠MPN=MPD+DPN

DPE=NPE+DPN

且∠DPE=90°

∴∠MPD=NPE

PMDPNE

PMDPNEASA

PD=PE

故在旋轉(zhuǎn)過(guò)程中,相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上個(gè)月某超市購(gòu)進(jìn)了兩批相同品種的水果,第一批用了2000元,第二批用了5500元,第二批購(gòu)進(jìn)水果的重量是第一批的2.5倍,且進(jìn)價(jià)比第一批每千克多1元.

1)求兩批水果共購(gòu)進(jìn)了多少千克?

2)在這兩批水果總重量正常損耗10%,其余全部售完的情況下,如果這兩批水果的售價(jià)相同,且總利潤(rùn)率不低于26%,那么售價(jià)至少定為每千克多少元?

(利潤(rùn)率=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩幢樓高AB=CD=30m,兩樓間的距離AC=24m,當(dāng)太陽(yáng)光線(xiàn)與水平線(xiàn)的夾角為30°時(shí),求甲樓投在乙樓上的影子的高度.(結(jié)果精確到0.01,≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AB5cm,BC4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿折線(xiàn)ABCA運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1AC   cm;

2)若點(diǎn)P恰好在AB的垂直平分線(xiàn)上,求此時(shí)t的值;

3)在運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),△ACP是以AC為腰的等腰三角形(直接寫(xiě)出結(jié)果)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人在玩轉(zhuǎn)盤(pán)游戲時(shí),把轉(zhuǎn)盤(pán)AB分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).

1)請(qǐng)用樹(shù)狀圖或列表法列出所有可能的結(jié)果;

2)若指針?biāo)傅膬蓚(gè)數(shù)字都是方程x2-5x+6=0的解時(shí),則甲獲勝;若指針?biāo)傅膬蓚(gè)數(shù)字都不是方程x2-5x+6=0的解時(shí),則乙獲勝,問(wèn)他們兩人誰(shuí)獲勝的概率大?請(qǐng)分析說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是菱形,以點(diǎn)為坐標(biāo)原點(diǎn),所在直線(xiàn)為軸建立平面直角坐標(biāo)系.若點(diǎn)的坐標(biāo)為,直線(xiàn)軸相交于點(diǎn),連接

1)求菱形的邊長(zhǎng);

2)證明為直角三角形;

3)直線(xiàn)上是否存在一點(diǎn)使得的面積與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過(guò)點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求m,kn的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2bxca≠0)的大致圖象如圖所示(1xh2,0xA1),下列結(jié)論:① 2ab0abc0;OC2OA,則2bac = 4;④ 3ac0,其中正確的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=的圖象經(jīng)過(guò)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過(guò)點(diǎn)A,在第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)圖象上,過(guò)點(diǎn)BBCx軸,交y軸于點(diǎn)C,且AC=AB,求:

(1)這個(gè)反比例函數(shù)的解析式;

(2)ΔABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案