(2013•安徽模擬)如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).

(1)如點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn).且∠ABC=60°,PA=3,PC=4,求PB的長(zhǎng).
(2)如圖(2),在銳角△ABC外側(cè)作等邊△ACB′連結(jié)BB′.求證:BB′過(guò)△ABC的費(fèi)馬點(diǎn)P,且BB′=PA+PB+PC.
(3)已知銳角△ABC,∠ACB=60°,分別以三邊為邊向形外作等邊三角形ABD,BCE,ACF,請(qǐng)找出△ABC的費(fèi)馬點(diǎn),并探究S△ABC與S△ABD的和,S△BCE與S△ACF的和是否相等.
分析:(1)由題意可得△ABP∽△BCP,所以PB2=PA•PC,即PB=2
3
;
(2)在BB'上取點(diǎn)P,使∠BPC=120°,連接AP,再在PB'上截取PE=PC,連接CE.由此可以證明△PCE為正三角形,再利用正三角形的性質(zhì)得到PC=CE,∠PCE=60°,∠CEB'=120°,而△ACB'為正三角形,由此也可以得到AC=B'C,∠ACB'=60°,現(xiàn)在根據(jù)已知的條件可以證明△ACP≌△B'CE,然后利用全等三角形的性質(zhì)即可證明題目的結(jié)論;
(3)作CP平分∠ACB,交BC的垂直平分線于點(diǎn)P,P點(diǎn)即費(fèi)馬點(diǎn);
要證明以上結(jié)論,需創(chuàng)造一些條件,首先可從△ABC中分出一部分使得與△ACF的面積相等,則過(guò)A作AM∥FC交BC于M,連接DM、EM,就可創(chuàng)造出這樣的條件,然后再證其它的面積也相等即可.
解答:解:(1)∵∠PAB+∠PBA=180°-∠APB=60°,
∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,
PA
PB
=
PB
PC

∴PB2=PA•PC=12,
∴PB=2
3
;


(2)證明:在BB'上取點(diǎn)P,使∠BPC=120°.連接AP,再在PB'上截取PE=PC,連接CE.

∠BPC=120°,
∴∠EPC=60°,
∴△PCE為正三角形,
∴PC=CE,∠PCE=60°,∠CEB'=120°.
∵△ACB'為正三角形,
∴AC=B′C,∠ACB'=60°,
∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,
∴∠PCA=∠ECB′,
∴△ACP≌△B′CE,
∴∠APC=∠B′EC=120°,PA=EB′,
∴∠APB=∠APC=∠BPC=120°,
∴P為△ABC的費(fèi)馬點(diǎn).
∴BB'過(guò)△ABC的費(fèi)馬點(diǎn)P,且BB'=EB'+PB+PE=PA+PB+PC.

(3)如下圖,
作CP平分∠ACB,交BC的垂直平分線于點(diǎn)P,P點(diǎn)就是費(fèi)馬點(diǎn);

證明:過(guò)A作AM∥FC交BC于M,連接DM、EM,

∵∠ACB=60°,∠CAF=60°,
∴∠ACB=∠CAF,
∴AF∥MC,
∴四邊形AMCF是平行四邊形,
又∵FA=FC,
∴四邊形AMCF是菱形,
∴AC=CM=AM,且∠MAC=60°,
∵在△BAC與△EMC中,
CA=CM,∠ACB=∠MCE,CB=CE,
∴△BAC≌△EMC,
∵∠DAM=∠DAB+∠BAM=60°+∠BAM
∠BAC=∠MAC+∠BAM=60°+∠BAM
∴∠BAC=∠DAM
在△ABC和△ADM中
AB=AD,∠BAC=∠DAM,AC=AM
∴△ABC≌△ADM(SAS)
故△ABC≌△MEC≌△ADM,
在CB上截取CM,使CM=CA,
再連接AM、DM、EM (輔助線這樣做△AMC就是等邊三角形了,后邊證明更簡(jiǎn)便)
易證△AMC為等邊三角形,
在△ABC與△MEC中,
CA=CM,∠ACB=∠MCE,CB=CE,
∴△ABC≌△MEC(SAS),
∴AB=ME,∠ABC=∠MEC,
又∵DB=AB,
∴DB=ME,
∵∠DBC=∠DBA+∠ABC=60°+∠ABC,
∠BME=∠BCE+∠MEC=60°+∠MEC,
∴∠DBC=∠BME,
∴DB∥ME,
即得到DB與ME平行且相等,故四邊形DBEM是平行四邊形,
∴四邊形DBEM是平行四邊形,
∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF,
即S△ABC+S△ABD=S△BCE+S△ACF
點(diǎn)評(píng):此題考查了等腰三角形與等邊三角形的性質(zhì)及三角形內(nèi)角和為180°等知識(shí);此類(lèi)已知三角形邊之間的關(guān)系求角的度數(shù)的題,一般是利用等腰(等邊)三角形的性質(zhì)得出有關(guān)角的度數(shù),進(jìn)而求出所求角的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽模擬)若關(guān)于x的方程2x-a=x-2的解為x=3,則字母a的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽模擬)函數(shù)y=
4x+3  (x≤0)
x+3    (0<x≤1)
-x+5  (x>1)
的最大值為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽模擬)
16
的平方根是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•安徽模擬)(1)圖①至圖③中,AB=
2
,旋轉(zhuǎn)角∠CAB=30°.
思考:
如圖①,當(dāng)線段AB繞點(diǎn)A旋轉(zhuǎn)至AC的位置時(shí),則點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)為
2
π
6
2
π
6
;圖中陰影部分的面積為
π
6
π
6


探究一
如圖②,當(dāng)線段AB變?yōu)橐訟B為直徑的半圓時(shí),將其繞點(diǎn)A旋轉(zhuǎn)至圖②中位置,則圖中陰影部分的面積為
π
6
π
6
;
如圖③,當(dāng)線段AB變?yōu)榈妊苯侨切蜛DB時(shí),∠ADB=90°,將其繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)B到點(diǎn)C,點(diǎn)D到點(diǎn)E.求圖中陰影部分的面積S.
(2)探究二
圖④中,一個(gè)不規(guī)則的圖形,其中AB=a,AD=b,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C,旋轉(zhuǎn)角∠CAB=n°(0°<n<180°),點(diǎn)D旋轉(zhuǎn)到點(diǎn)E,則點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)為
nπa
180
nπa
180
;圖中陰影部分的面積為
nπ(a2-b2)
360
nπ(a2-b2)
360

查看答案和解析>>

同步練習(xí)冊(cè)答案