【題目】等腰三角形的一個角比另一個角的倍少度,則等腰三角形頂角的度數(shù)是(

A.B.C.D.

【答案】D

【解析】

設另一個角是x,表示出一個角是2x-20°,然后分①x是頂角,2x-20°是底角,②x是底角,2x-20°是頂角,③x2x-20°都是底角根據(jù)三角形的內(nèi)角和等于180°與等腰三角形兩底角相等列出方程求解即可.

設另一個角是x,表示出一個角是2x-20°,

x是頂角,2x-20°是底角時,x+22x-20°)=180°,

解得x=44°,

∴頂角是44°;

x是底角,2x-20°是頂角時,2x+2x-20°)=180°,

解得x=50°,

∴頂角是2×50°-20°=80°;

x2x-20°都是底角時,x=2x-20°,

解得x=20°,

∴頂角是180°-20°×2=140°;

綜上所述,這個等腰三角形的頂角度數(shù)是44°或80°或140°.

故答案為:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校積極推進“陽光體育”工程,本學期在九年級11個班中開展籃球單循環(huán)比賽(每個班與其它班分別進行一場比賽,每班需進行10場比賽).比賽規(guī)則規(guī)定:每場比賽都要分出勝負,勝一場得3分,負一場得﹣1分.

1)如果某班在所有的比賽中只得14分,那么該班勝負場數(shù)分別是多少?

2)假設比賽結(jié)束后,甲班得分是乙班的3倍,甲班獲勝的場數(shù)不超過5場,且甲班獲勝的場數(shù)多于乙班,請你求出甲班、乙班各勝了幾場.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC中,ADBC邊上的中線,則有SABDSACD,許多面積問題可以轉(zhuǎn)化為這個基本模型解答.如圖②,已知ABC的面積為1,把ABC各邊均順次延長一倍,連結(jié)所得端點,得到A1B1C1,即將ABC向外擴展了一次,則擴展一次后的A1B1C1的面積是_____,如圖③,將ABC向外擴展了兩次得到A2B2C2,……,若將ABC向外擴展了n次得到AnBnn,則擴展n次后得到的AnBnn面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,分別為的中點,延長至點,使,連結(jié)

1)求證:

2)猜想:的面積與四邊形的面積的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A ,D,B,E在同一條直線上,且AD = BE, AC = DF,補充下列其中一個條件后,不一定能得到ABCDEF 的是(

A.BC = EFB.AC//DFC.C = FD.BAC = EDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),,按此方式依次操作,則第6個正六邊形的邊長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為落實“精準扶貧惠民政策”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊先合作施工15天,那么余下的工程由甲隊單獨完成還需5天.

(1)這項工程的規(guī)定時間是多少天?

(2)為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊合作完成.則甲、乙兩隊合作完成該工程需要多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件贏利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價2元,商場平均每天可多售出5件.求:

1若商場平均每天要贏利1400元,每件襯衫應降價多少元?

2)每件襯衫降價多少元時,商場平均每天贏利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。

A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形

查看答案和解析>>

同步練習冊答案