【題目】已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,A(0,2),B(﹣1,0).

(1)求點(diǎn)C的坐標(biāo);
(2)求過(guò)A、B、C三點(diǎn)的拋物線的解析式和對(duì)稱軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo);
(4)在拋物線對(duì)稱軸上,是否存在這樣的點(diǎn)M,使得△MPC(P為上述(3)問(wèn)中使S最大時(shí)的點(diǎn))為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:在Rt△ABC中,AO⊥BC,OA=2,OB=1,

則:OC= =4,

∴C(4,0).


(2)

解:設(shè)拋物線的解析式:y=a(x+1)(x﹣4),代入點(diǎn)A的坐標(biāo),得:

a(0+1)(0﹣4)=2,a=﹣

∴拋物線的解析式:y=﹣ (x+1)(x﹣4)=﹣ x2+ x+2,對(duì)稱軸是:直線x=


(3)

解:設(shè)直線AC的解析式為:y=kx+2,代入點(diǎn)C(4,0),得:

4k+2=0,k=﹣

∴直線AC:y=﹣ x+2;

過(guò)點(diǎn)P作PQ⊥x軸于H,交直線AC于Q,設(shè)P(m,﹣ m2+ m+2)、

∴S梯形AOHP= [2+(﹣ m2+ m+2)]m=﹣ m3+ m2+2m,

SPHC= (4﹣m)(﹣ m2+ m+2)= m3 m2+2m+4,

SAOC= ×4×2=4,

S=S梯形AOHP+SPHC﹣SAOC=﹣m2+4m=﹣(m﹣2)2+4,

∴當(dāng)m=2,即 P(2,3)時(shí),S的值最大


(4)

解:依題意,設(shè)M( ,b),已知P(2,3)、C(4,0),則有:

MP2=b2﹣6b+ 、MC2=b2+ 、PC2=13;

當(dāng)MP=MC時(shí),b2﹣6b+ =b2+ ,解得 b= ;

當(dāng)MP=PC時(shí),b2﹣6b+ =13,解得 b=

當(dāng)MC=PC時(shí),b2+ =13,解得 b=± ;

綜上,存在符合條件的M點(diǎn),且坐標(biāo)為 ( , )、( , )、( , )、( , )、( ,﹣ ).


【解析】(1)Rt△ABC中,AO⊥BC,且知道了OA、OB的長(zhǎng),由射影定理能求出OC的長(zhǎng),也就得到了點(diǎn)C的坐標(biāo).(2)利用待定系數(shù)法即可確定拋物線的解析式,由x=﹣ 能求出拋物線的對(duì)稱軸.(3)首先求出直線AC的解析式,過(guò)點(diǎn)P作x軸的垂線,交直線AC于Q,在知道拋物線和直線AC解析式的情況下,用m表示出點(diǎn)P、Q的坐標(biāo),兩點(diǎn)縱坐標(biāo)差的絕對(duì)值即為線段PQ的長(zhǎng),而S= ACPQ,據(jù)此求得關(guān)于S、m的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可確定S最大時(shí)點(diǎn)P的坐標(biāo).(4)首先設(shè)出點(diǎn)M的坐標(biāo),然后列出△MPC的三邊長(zhǎng),若該三角形是等腰三角形,根據(jù)①M(fèi)P=MC、②MP=PC、③MC=PC列出等式求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時(shí)內(nèi)其血液中酒精含量(毫克/百毫升)與時(shí)間(時(shí))成正比例;1.5小時(shí)后(包括1.5小時(shí))成反比例.根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)求一般成人喝半斤低度白酒后, 之間的兩個(gè)函數(shù)關(guān)系式及相應(yīng)的自變量 取值范圍;

(2)依據(jù)人的生理數(shù)據(jù)顯示,當(dāng)≥80時(shí),肝部正被嚴(yán)重?fù)p傷,請(qǐng)問(wèn)喝半斤低度白酒后,肝部被嚴(yán)重?fù)p傷持續(xù)多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李先生在2018年9月第14周星期五股市收盤時(shí),以每股9元的價(jià)格買進(jìn)某公司的股票1000股,在9月第3周的星期一至星期五,該股票每天收盤時(shí)每股的漲跌(單位:元)情況如下表:注:表中記錄的數(shù)據(jù)為每天收盤價(jià)格與前一天收盤價(jià)格的變化量,星期一的數(shù)據(jù)是與上星期五收盤價(jià)格的變化量.

(1)請(qǐng)你判斷在9月的第3周內(nèi),該股票價(jià)格收盤時(shí),價(jià)格最高的是哪一天?

(2)在9月第3周內(nèi),求李先生購(gòu)買的股票每股每天平均的收盤價(jià)格.(結(jié)果精確到百分位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知P為⊙O外一點(diǎn),PA為⊙O的切線,B為⊙O上一點(diǎn),且PA=PB,C為優(yōu)弧 上任意一點(diǎn)(不與A、B重合),連接OP、AB,AB與OP相交于點(diǎn)D,連接AC、BC.

(1)求證:PB為⊙O的切線;
(2)若tan∠BCA= ,⊙O的半徑為 ,求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.

(1)延長(zhǎng)CBG點(diǎn),使得BG=DF (如圖①),求證:△AEG≌△AEF

(2)若直線EFAB,AD的延長(zhǎng)線分別交于點(diǎn)MN(如圖②),求證:EF2=ME2+NF2

(3)將正方形改為長(zhǎng)與寬不相等的矩形,若其余條件不變(如圖③),請(qǐng)你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)P、Q分別是邊AD和BC的中點(diǎn),沿過(guò)C點(diǎn)的直線折疊矩形ABCD使點(diǎn)B落在線段PQ上的點(diǎn)F處,折痕交AB邊于點(diǎn)E,交線段PQ于點(diǎn)G,若BC長(zhǎng)為3,則線段FG的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)甲、乙兩種型號(hào)的滑板車,共花費(fèi)13000元,所購(gòu)進(jìn)甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過(guò)乙型車數(shù)量的三倍.現(xiàn)已知甲型車每輛進(jìn)價(jià)200元,乙型車每輛進(jìn)價(jià)400元,設(shè)商店購(gòu)進(jìn)乙型車x輛.
(1)商店有哪幾種購(gòu)車方案?
(2)若商店將購(gòu)進(jìn)的甲、乙兩種型號(hào)的滑板車全部售出,并且銷售甲型車每輛獲得利潤(rùn)70元,銷售乙型車每輛獲得利潤(rùn)50元,寫出此商店銷售這兩種滑板車所獲得的總利潤(rùn)y(元)與購(gòu)進(jìn)乙型車的輛數(shù)x(輛)之間的函數(shù)關(guān)系式?并求出商店購(gòu)進(jìn)乙型車多少輛時(shí)所獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是由若干個(gè)小圓圈堆成的一個(gè)形如等邊三角形的圖案,最上面一層有一個(gè)圓圈,

以下各層均比上一層多一個(gè)圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以

算出圖1中所有圓圈的個(gè)數(shù)為123n

如果圖中的圓圈共有13層,請(qǐng)解決下列問(wèn)題:

1)我們自上往下,在每個(gè)圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)12,3,4,……,則最底層最左

邊這個(gè)圓圈中的數(shù)是

2)我們自上往下,在每個(gè)圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20,……,求

最底層最右邊圓圈內(nèi)的數(shù)是_______;

3)求圖4中所有圓圈中各數(shù)的絕對(duì)值之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市甲、乙兩個(gè)汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

請(qǐng)你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

8

請(qǐng)你從以下兩個(gè)不同的方面對(duì)甲、乙兩個(gè)汽車銷售公司去年一至十月份的銷售情況進(jìn)行分析:

從平均數(shù)和方差結(jié)合看;

從折線圖上甲、乙兩個(gè)汽車銷售公司銷售數(shù)量的趨勢(shì)看分析哪個(gè)汽車銷售公司較有潛力

查看答案和解析>>

同步練習(xí)冊(cè)答案