【題目】下列計(jì)算中,正確的是( )
A. a3+a2=a5 B. a3·a2=a5 C. (a3)2=a5 D. a3-a2=a
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),a、b、c是直線,下列說法正確的是( )
A. 若a∥b,b∥c 則 a∥c
B. 若a⊥b,b⊥c,則a⊥c
C. 若a∥b,b⊥c,則a∥c
D. 若a∥b,b∥c,則a⊥c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山東省愛心公益群體為某白血病患者舉行了募捐義演晚會(huì),募捐近十萬元. 若某中學(xué)某班45名學(xué)生為該患者捐款315元,且該班同學(xué)捐款情況如下表所示,則該班捐款10元的同學(xué)有( 。
捐款(元) | 5 | 8 | 10 |
捐款人數(shù)(人) | 5 |
A. 15人 B. 20人 C. 25人 D. 30人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市九年級(jí)學(xué)生學(xué)業(yè)考試體育成績(jī),現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)進(jìn)行分段(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)統(tǒng)計(jì)如下:
學(xué)業(yè)考試體育成績(jī)(分?jǐn)?shù)段)統(tǒng)計(jì)表
根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計(jì)表中,a的值為 ,b的值為 ,并將統(tǒng)計(jì)圖補(bǔ)充完整(溫馨提示:作圖時(shí)別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(2)甲同學(xué)說:“我的體育成績(jī)是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù).”請(qǐng)問:甲同學(xué)的體育成績(jī)應(yīng)在什么分?jǐn)?shù)段內(nèi)? (填相應(yīng)分?jǐn)?shù)段的字母)
(3)如果把成績(jī)?cè)?0分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=10,AC=8,點(diǎn)Q在AB上,且AQ=2,過Q做QR⊥AB,垂足為Q,QR交折線AC﹣CB于R(如圖1),當(dāng)點(diǎn)Q以每秒2個(gè)單位向終點(diǎn)B移動(dòng)時(shí),點(diǎn)P同時(shí)從A出發(fā),以每秒6個(gè)單位的速度沿AB﹣BC﹣CA移動(dòng),設(shè)移動(dòng)時(shí)間為t秒(如圖2).
(1)求△BCQ的面積S與t的函數(shù)關(guān)系式.
(2)t為何值時(shí),QP∥AC?
(3)t為何值時(shí),直線QR經(jīng)過點(diǎn)P?
(4)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),以PQ為邊在AB上方所作的正方形PQMN在Rt△ABC內(nèi)部,求此時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:在一個(gè)圖形上畫一條直線,若這條直線既平分該圖形的面積,又平分該圖形的周長(zhǎng),我們稱這條直線為這個(gè)圖形的“等分積周線”.
(1)如圖1,在△ABC中,AB=BC,且BC≠AC,請(qǐng)你在圖1中用尺規(guī)作圖作出△ABC的一條“等分積周線”;
(2)在圖1中,過點(diǎn)C能否畫出一條“等分積周線”?若能,說出確定的方法;若不能,請(qǐng)說明理由.
(3)如圖3,在△ABC中,AB=BC=6cm,AC=8cm,請(qǐng)你不過△ABC的頂點(diǎn),畫出△ABC的一條“等分積周線”,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com