已知⊙O1與⊙O2的半徑分別為1和2,且它們的兩條公切線互相垂直,則圓心距O1O2的長為________.


分析:圓D與圓A,B,C的公切線互相垂直,圓D的半徑為2,圓A,B,C的半徑為1,由勾股定理可分別求得CD,BD,AD的值.
解答:解:如圖,圓D與圓A,B,C的公切線互相垂直,圓D的半徑為2,圓A,B,C的半徑為1,
由勾股定理易得CD==,
BD==,
AD==3
故答案為:
點評:本題考查了圓與圓的位置關(guān)系,本題利用了切線的性質(zhì),正方形和矩形的性質(zhì),勾股定理求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

6、已知⊙O1與⊙O2的半徑分別為3cm和4cm,若O1O2=7cm,則⊙O1與⊙O2的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知⊙O1與⊙O2的半徑分別是2cm、4cm,圓心距O1O2為3cm,則⊙O1與⊙O2的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、已知⊙O1與⊙O2的圓心距是9cm,它們的半徑分別為3cm和6cm,則這兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑分別為2cm和5cm,兩圓的圓心距O1O2=5cm,則兩圓的位置關(guān)系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過⊙O1的圓心O1,且兩圓相交于A,B兩點,C為⊙O2上的點,連接AC交⊙O1于D點,再連接BC,BD,AO1,AO2,O1O2,有如下四個結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號為
 

查看答案和解析>>

同步練習冊答案