【題目】某排球隊6名上場隊員的身高(單位:)是:180,184188,190,192,194,現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高平均數(shù)________.填變大不變變小),方差________.(填變大不變變小

【答案】變小 變小

【解析】

分別計算出原數(shù)據(jù)和新數(shù)據(jù)的平均數(shù)和方差即可得答案.

解:原數(shù)據(jù)的平均數(shù)為188,

則原數(shù)據(jù)的方差為×[1801882+(1841882+(1881882+(1901882+(1921882+(1941882],

新數(shù)據(jù)的平均數(shù)為187

則新數(shù)據(jù)的方差為×[1801872+(1841872+(1881872+(1901872+(1861872+(1941872],

所以平均數(shù)變小,方差變小,

故答案為:變小,變小.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:

(1)若工廠計劃獲利14萬元,問A、B兩種產(chǎn)品應分別生產(chǎn)多少件?

(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?

(3)(2)條件下,哪種方案獲利最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10×10網(wǎng)格中,點A和直線l的位置如圖所示:

1)將點A向右平移6個單位,再向上平移2個單位長度得到點B,在網(wǎng)格中標出點B;

2)在(1)的條件下,在直線l上確定一點P,使PAPB的值最小,保留畫圖痕跡,并直接寫出PAPB的最小值:______;

3)結合(2)的畫圖過程并思考,直接寫出的最小值:____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠為了解工人在單位時間內(nèi)加工同一種零件的技能水平,隨機抽取了50名工人加工的零件進行檢測,統(tǒng)計出他們各自加工的合格品數(shù)是18這8個整數(shù),現(xiàn)提供統(tǒng)計圖的部分信息如圖,請解答下列問題:

1根據(jù)統(tǒng)計圖,求這50名工人加工出的合格品數(shù)的中位數(shù);

2寫出這50名工人加工出的合格品數(shù)的眾數(shù)的可能取值;

3廠方認定,工人在單位時間內(nèi)加工出的合格品數(shù)不低于3件為技能合格,否則,將接受技能再培訓已知該廠有同類工人400名,請估計該廠將接受技能再培訓的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1,在平面直角坐標系中,點是坐標原點,點軸的正半軸上,點的坐標為,四邊形是菱形,直線于點,交軸于點,連接

1)點的坐標是______;

2)求直線的函數(shù)解析式;

3)如圖2,動點從點出發(fā),沿折線方向以1個單位長度/秒的速度向終點勻速運動,設的面積為),點的運動時間為秒,求之間的函數(shù)關系式(要求寫出自變量的取值范圍)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)時代,發(fā)達的物流業(yè)改變了我們的生活.某快遞公司的分發(fā)中心、菜鳥驛站、快遞員公寓依次分布在同一條直線上,快遞員甲、乙分別同時從菜鳥驛站和分發(fā)中心出發(fā),甲先騎自行車回到分發(fā)中心,將自行車歸還分發(fā)中心后步行經(jīng)過菜鳥驛站返回公寓(歸還自行車的時間忽略不計),乙先從分發(fā)中心步行到菜鳥驛站,步行速度與甲的步行速度相同,到達菜鳥驛站后停下來繼續(xù)完成剩余工作,隨后跑步回公寓,最后兩人同時到達公寓.甲、乙兩人與公寓的距離y()與出發(fā)的時間x(分鐘)之間的關系如圖所示.

(1)甲騎自行車的速度為 /分,乙跑步的速度為 /;

(2)乙在菜鳥驛站停留的時間為 分鐘;

(3)甲乙第二次相遇后再經(jīng)過多少分鐘他們相距450米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形

1)如圖,點延長線上,,求證:點中點.

2)如圖,點中點,延長線上一點,且,求證:

3)在(2)的條件下,若的延長線與交于點,試判斷四邊形是否為平行四邊形?并證明你的結論(先補全圖形再解答).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OFMON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側,且PQ=OA,作線段OQ的垂直平分線,分別交直線OFON交于點B、點C,連接AB、PB

1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關系;

2)如圖2,當P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3,MON=60°,連接AP,設=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點EAB中點.沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F.已知EF=cm BC的長是_______________

查看答案和解析>>

同步練習冊答案