【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若點C是弧AB的中點,已知AB=4,求CECP的值.
【答案】(1)PD是⊙O的切線;(2)8.
【解析】
試題分析:(1)連結(jié)OP,根據(jù)圓周角定理可得∠AOP=2∠ACP=120°,然后計算出∠PAD和∠D的度數(shù),進而可得∠OPD=90°,從而證明PD是⊙O的切線;
(2)連結(jié)BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC長,再證明△CAE∽△CPA,進而可得,然后可得CECP的值.
試題解析:(1)如圖,PD是⊙O的切線.
證明如下:
連結(jié)OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切線.
(2)連結(jié)BC,∵AB是⊙O的直徑,∴∠ACB=90°,又∵C為弧AB的中點,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CPCE=CA2=()2=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夏季來臨,商場準備購進甲、乙兩種空調(diào)已知甲種空調(diào)每臺進價比乙種空調(diào)多500元,用40000元購進甲種空調(diào)的數(shù)量與用30000元購進乙種空調(diào)的數(shù)量相同請解答下列問題:
求甲、乙兩種空調(diào)每臺的進價;
若甲種空調(diào)每臺售價2500元,乙種空調(diào)每臺售價1800元,商場欲同時購進兩種空調(diào)20臺,且全部售出,請寫出所獲利潤元與甲種空調(diào)臺之間的函數(shù)關(guān)系式;
在的條件下,若商場計劃用不超過36000元購進空調(diào),且甲種空調(diào)至少購進10臺,并將所獲得的最大利潤全部用于為某敬老院購買1100元臺的A型按摩器和700元臺的B型按摩器直接寫出購買按摩器的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿DE折疊,使點A落在BC邊上的點F處,且DE∥BC,下列結(jié)論中,一定正確的個數(shù)是( )
①△BDF是等腰三角形;
②DE=BC;
③四邊形ADFE是菱形;
④∠BDF+∠FEC=2∠A.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=60°.G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結(jié)CE,DF,下列說法不正確的是( )
A. 四邊形CEDF是平行四邊形
B. 當時,四邊形CEDF是矩形
C. 當時,四邊形CEDF是菱形
D. 當時,四邊形CEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準備為七年級學(xué)生開設(shè)共6門選修課,選取了若干學(xué)生進行了我最喜歡的一門選修課調(diào)查,將調(diào)查結(jié)果繪制成了如圖所示的統(tǒng)計圖表(不完整).
選修課 | ||||||
人數(shù) | 40 | 60 | 100 |
下列說法不正確的是( )
A.這次被調(diào)查的學(xué)生人數(shù)為400人B.對應(yīng)扇形的圓心角為
C.喜歡選修課的人數(shù)為72人D.喜歡選修課的人數(shù)最少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù) y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方,所得的折線是函數(shù)y=(b為常數(shù))的圖象,若該圖象在直線y=1下方的點的橫坐標x滿足0<x<3,則 b的取值范圍為( )
A.-5≤b≤-1B.-3≤b≤-1C.-2≤b≤0D.-3≤b≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖∠1=∠2,CF⊥AB,DE⊥AB,求證:FG∥BC.
證明:∵CF⊥AB,DE⊥AB (已知)
∴∠BED=90°,∠BFC=90°( )
∴∠BED=∠BFC ( )
∴ED∥FC ( )
∴∠1=∠BCF ( )
∵∠2=∠1 ( 已知 )
∴∠2=∠BCF ( )
∴FG∥BC ( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com