【題目】兩個(gè)工程隊(duì)共同參與一項(xiàng)筑路工程,甲隊(duì)單獨(dú)施工3個(gè)月,這時(shí)增加了乙隊(duì),兩隊(duì)又共同工作了2個(gè)月,總工程全部完成,已知甲隊(duì)單獨(dú)完成全部工程比乙隊(duì)單獨(dú)完成全部工程多用2個(gè)月,設(shè)甲隊(duì)單獨(dú)完成全部工程需個(gè)月,則根據(jù)題意可列方程中錯(cuò)誤的是(

A.B.C.D.

【答案】A

【解析】

設(shè)甲隊(duì)單獨(dú)完成全部工程需個(gè)月,則乙隊(duì)單獨(dú)完成全部工程需要(x2)個(gè)月,根據(jù)甲隊(duì)施工5個(gè)月的工程量+乙隊(duì)施工2個(gè)月的工程量=總工程量1列出方程,然后依次對(duì)各方程的左邊進(jìn)行變形即可判斷.

解:設(shè)甲隊(duì)單獨(dú)完成全部工程需個(gè)月,則乙隊(duì)單獨(dú)完成全部工程需要(x2)個(gè)月,根據(jù)題意,得:;

A、,與上述方程不符,所以本選項(xiàng)符合題意;

B、可變形為,所以本選項(xiàng)不符合題意;

C、可變形為,所以本選項(xiàng)不符合題意;

D、的左邊化簡(jiǎn)得,所以本選項(xiàng)不符合題意.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖I,在中,.點(diǎn)外,連接,作,交于點(diǎn),,,連接.間的等量關(guān)系是______;(不用證明)

2)如圖Ⅱ,,,延長(zhǎng)于點(diǎn),寫出間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC的邊長(zhǎng)為10,點(diǎn)M是邊AB上一動(dòng)點(diǎn),將等邊ABC沿過(guò)點(diǎn)M的直線折疊,該直線與直線AC交于點(diǎn)N,使點(diǎn)A落在直線BC上的點(diǎn)D處,且BD:DC=1:4,折痕為MN,則AN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,的平分線相交于點(diǎn),且于點(diǎn).若,,則的長(zhǎng)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,將其折疊,使點(diǎn)與點(diǎn)重合, 則重疊部分的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形ABCD內(nèi),將兩張邊長(zhǎng)分別為ab(a>b)的正方形紙片按圖1,圖2兩種方式放置(1,圖2中兩張正方形紙片均有部分重疊),設(shè)圖1中未被這兩張正方形紙片覆蓋的面積為S1,圖2中未被這兩張正方形紙片覆蓋的面積為S2,當(dāng)S2-S1=b時(shí),AD-AB的值為( )

A.1B.2C.2a-2bD.b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).

(1)試判斷直線AB與直線CD的位置關(guān)系,并說(shuō)明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EPCD交于點(diǎn)G,點(diǎn)HMN上一點(diǎn),且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,KGH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問(wèn)∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值;若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,且.

1)求點(diǎn)AB的坐標(biāo);

2)如圖1,P點(diǎn)為y軸正半軸上一點(diǎn),連接BP,若,請(qǐng)求出P點(diǎn)的坐標(biāo);

3)如圖2,已知,若C點(diǎn)是x軸上一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)C,使,若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x﹣12+cx軸交于ABA,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A﹣1,0).

1)求點(diǎn)B,C的坐標(biāo);

2)判斷CDB的形狀并說(shuō)明理由;

3)將COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0t3)得到QPEQPECDB重疊部分(如圖中陰影部分)面積為S,求St的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案