【題目】如圖,拋物線(xiàn)與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1、x2是方程x2-2x-8=0的兩個(gè)根.
(1)求這條拋物線(xiàn)的解析式;
(2)點(diǎn)P是線(xiàn)段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)探究:若點(diǎn)Q是拋物線(xiàn)對(duì)稱(chēng)軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=-0.5x2+x+4;(2)P(1,0);(3)存在,Q1(1,1),Q2(1, )Q3(1,-),Q4(1,4+),Q5(1,4-)
【解析】試題分析: (1)先通過(guò)解方程求出A,B兩點(diǎn)的坐標(biāo),然后根據(jù)A,B,C三點(diǎn)的坐標(biāo),用待定系數(shù)法求出拋物線(xiàn)的解析式;(2)本題要通過(guò)求△CPE的面積與P點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式而后根據(jù)函數(shù)的性質(zhì)來(lái)求△CPE的面積的最大值以及對(duì)應(yīng)的P的坐標(biāo).△CPE的面積無(wú)法直接表示出,可用△CPB和△BEP的面積差來(lái)求,設(shè)出P點(diǎn)的坐標(biāo),即可表示出BP的長(zhǎng),可通過(guò)相似三角形△BEP和△BAC求出.△BEP中BP邊上的高,然后根據(jù)三角形面積計(jì)算方法即可得出△CEP的面積,然后根據(jù)上面分析的步驟即可求出所求的值;(3)本題要分三種情況進(jìn)行討論:①Q(mào)C=BC,那么Q點(diǎn)的縱坐標(biāo)就是C點(diǎn)的縱坐標(biāo)減去或加上BC的長(zhǎng).由此可得出Q點(diǎn)的坐標(biāo).②QB=BC,此時(shí)Q,C關(guān)于x軸對(duì)稱(chēng),據(jù)此可求出Q點(diǎn)的坐標(biāo).③QB=QC,Q點(diǎn)在BC的垂直平分線(xiàn)上,可通過(guò)相似三角形來(lái)求出QC的長(zhǎng),進(jìn)而求出Q點(diǎn)的坐標(biāo);
試題解析:
(1)∵x2-2x-8=0,
∴(x-4)(x+2)=0.
∴x1=4,x2=-2.
∴A(4,0),B(-2,0).
又∵拋物線(xiàn)經(jīng)過(guò)點(diǎn)A、B、C,設(shè)拋物線(xiàn)解析式為y=ax2+bx+c(a≠0),
∴
解得
∴所求拋物線(xiàn)的解析式為y=-0.5x2+x+4;
(2)設(shè)P點(diǎn)坐標(biāo)為(m,0),過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,如圖所示:
∵點(diǎn)B坐標(biāo)為(-2,0),點(diǎn)A坐標(biāo)(4,0),
∴AB=6,BP=m+2.
∵PE∥AC,
∴△BPE∽△BAC.
∴BP:AB=EG:CH
∴EG:4=(m+2):6
∴EG=(2m+4):3
∴S△CPE=S△CBP-S△EBP
=-1/3(m-1)2+3.
又∵-2≤m≤4,
∴當(dāng)m=1時(shí),S△CPE有最大值3.此時(shí)P點(diǎn)的坐標(biāo)為(1,0);
(3)存在Q點(diǎn),
∵BC= ,
設(shè)Q(1,n),
當(dāng)BQ=CQ時(shí),
則32+n2=12+(n-4)2,
解得:n=1,
即Q1(1,1);
當(dāng)BC=BQ=,時(shí),9+n2=20,
解得:n=± ,
∴Q2(1, ),Q3(1,-);
當(dāng)BC=CQ=時(shí), ,1+(n-4)2=20,
解得:n=4±
∴Q4(1,4+), Q5(1,4-);
綜上可得:坐標(biāo)為Q1(1,1),Q2(1, )Q3(1,-),Q4(1,4+),Q5(1,4-).
點(diǎn)睛: 本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形面積的求法、三角形相似、探究等腰三角形的構(gòu)成情況等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生分類(lèi)討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角三角形ABC中,直線(xiàn)l為BC的中垂線(xiàn),直線(xiàn)m為∠ABC的角平分線(xiàn),l與m相交于P點(diǎn).若∠BAC=60°,∠ACP=24°,則∠ABP是( )
A.24°
B.30°
C.32°
D.36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖AB∥EF,BC⊥CD,則∠α,∠β,∠γ之間的關(guān)系是( )
A.∠β=∠α+∠γ
B.∠α+∠β+∠γ=180°
C.∠α+∠β﹣∠γ=90°
D.∠β+∠γ﹣∠α=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四舍五入法按要求對(duì)3.1415926分別取近似值,其中錯(cuò)誤的是( 。
A. 3.1(精確到0.1) B. 3.141(精確到千分位)
C. 3.14(精確到百分位) D. 3.1416(精確到0.0001)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為減少環(huán)境污染,自2008年6月1日起,全國(guó)的商品零售場(chǎng)所開(kāi)始實(shí)行“塑料購(gòu)物袋有償使用制度”(以下簡(jiǎn)稱(chēng)“限塑令”).某班同學(xué)于6月上旬的一天,在某超市門(mén)口采用問(wèn)卷調(diào)查的方式,隨機(jī)調(diào)查了“限塑令”實(shí)施前后,顧客在該超市用購(gòu)物袋的情況,以下是根據(jù)100位顧客的100份有效答卷畫(huà)出的統(tǒng)計(jì)圖表的一部分:
“限塑令”實(shí)施后,塑料購(gòu)物袋使用后的處理方式統(tǒng)計(jì)表
處理方式 | 直接丟棄 | 直接做垃圾袋 | 再次購(gòu)物使用 | 其它 |
選該項(xiàng)的人數(shù)占 總?cè)藬?shù)的百分比 | 5% | 35% | 49% | 11% |
請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:
(1)補(bǔ)全圖1,“限塑令”實(shí)施前,如果每天約有2 000人次到該超市購(gòu)物.根據(jù)這100位顧客平均一次購(gòu)物使用塑料購(gòu)物袋的平均數(shù),估計(jì)這個(gè)超市每天需要為顧客提供多少個(gè)塑料購(gòu)物袋?
(2)補(bǔ)全圖2,并根據(jù)統(tǒng)計(jì)圖和統(tǒng)計(jì)表說(shuō)明,購(gòu)物時(shí)怎樣選用購(gòu)物袋,塑料購(gòu)物袋使用后怎樣處理,能對(duì)環(huán)境保護(hù)帶來(lái)積極的影響.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com