【題目】如圖,在四邊形ABCD中,AB∥DC,E是AD中點(diǎn),EF⊥BC于點(diǎn)F,BC=5,EF=3.
(1)若AB=DC,則四邊形ABCD的面積S=__;
(2)若AB>DC,則此時(shí)四邊形ABCD的面積S′__S(用“>”或“=”或“<”填空).
【答案】(1)15;(2)=.
【解析】試題分析:(1)∵AB=DC,AB∥DC,
∴四邊形ABCD是平行四邊形,
∴四邊形ABCD的面積S=5×3=15,
(2)如圖,連接EC,延長CD、BE交于點(diǎn)P,
∵E是AD中點(diǎn),
∴AE=DE,
又∵AB∥CD,
∴∠ABE=∠P,∠A=∠PDE,
在△ABE和△DPE中,
∵,
∴△ABE≌△DPE(AAS),
∴S△ABE=S△DPE,BE=PE,
∴S△BCE=S△PCE,
則S四邊形ABCD=S△ABE+S△CDE+S△BCE
=S△PDE+S△CDE+S△BCE
=S△PCE+S△BCE
=2S△BCE
=2××BC×EF
=15,
∴當(dāng)AB>DC,則此時(shí)四邊形ABCD的面積S′=S,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)點(diǎn)A,B,C在數(shù)軸上表示數(shù)a,b,c,滿足(b+2)2+(c–24)2=0,多項(xiàng)式x|a+3|y2–ax3y+xy2–1是關(guān)于字母x,y的五次多項(xiàng)式.
(1)a的值__________,b的值__________,c的值__________.
(2)已知螞蟻從A點(diǎn)出發(fā),以每秒3 cm的速度爬行,先到點(diǎn)B,再到點(diǎn)C,一共需要多長時(shí)間?(精確到秒)
(3)求值:a2b–bc.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上的一點(diǎn),連接PA,PC.
(1)證明:∠PAB=∠PCB;
(2)在BC上截取一點(diǎn)E,連接PE,使得PE=PC,連接AE,判斷△PAE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的三角形中,是直角三角形的是( 。
A.三角形的三邊長滿足關(guān)系a+b=c
B.三角形的三邊長之比2:3:4
C.三角形的三邊長分別為5、12、13
D.三角形的一邊長等于另一邊長的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)用分式方程,解決下面問題:
為改善城市排水系統(tǒng),某市需要新鋪設(shè)一段全長為3 000m的排水管道。為了減少施工對(duì)城市交通的影響,實(shí)際施工時(shí)每天的工效是原計(jì)劃的1.2倍,結(jié)果提前5天完成這一任務(wù).
(1)這個(gè)工程隊(duì)原計(jì)劃每天鋪設(shè)管道多少m?
(2)填空:在這項(xiàng)工程中,如果要求工程隊(duì)提前6天完成任務(wù),那么實(shí)際施工時(shí)每天的工效比原計(jì)劃增加__________(填百分?jǐn)?shù),不寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“對(duì)頂角相等”,這個(gè)命題改寫成“如果……那么……”的形式應(yīng)該為________________________________________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com