【題目】如圖,在正方形ABCD中,P是邊BC上的一動點(不與點B,C重合),點B關(guān)于直線AP的對稱點為E,連接AE,連接DE并延長交射線AP于點F,連接BF

1)若,直接寫出的大。ㄓ煤的式子表示).

2)求證:.

3)連接CF,用等式表示線段AF,BF,CF之間的數(shù)量關(guān)系,并證明.

【答案】145°+;(2)證明見解析;(3AF=BF+CF.

【解析】

1)過點AAGDFG,由軸對稱性質(zhì)和正方形的性質(zhì)可得AE=AD,∠BAP=EAF,根據(jù)等腰三角形三線合一的性質(zhì)可得∠EAG=DAG,即可得∠FAG=BAD=45°,∠DAG+BAP=45°,根據(jù)直角三角形兩銳角互余的性質(zhì)即可得答案;

2)由(1)可得∠FAG=BAD=45°,由AGPD可得∠APG=45°,根據(jù)軸對稱的性質(zhì)可得∠BPA=APG=45°,可得∠BFD=90°,即可證明BFDF;

3)連接BD、BE,過點CCH//FD,交BE延長線于H,由∠BFD=BCD=90°可得B、FC、D四點共圓,根據(jù)圓周角定理可得∠FBC=FDC,∠DFC=DBC=45°,根據(jù)平行線的性質(zhì)可得∠FDC=DCH,根據(jù)角的和差關(guān)系可得∠ABF=BCH,由軸對稱性質(zhì)可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,BE=BF,即可證明∠BEF=DFC,可得BH//FC,即可證明四邊形EFCH是平行四邊形,可得EH=FCEF=CH,利用等量代換可得CH=BF,利用SAS可證明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的數(shù)量關(guān)系.

1)過點AAGDFG,

∵點B關(guān)于直線AF的對稱點為E,四邊形ABCD是正方形,

AE=ABAB=AD=DC=BC,∠BAF=EAF,

AE=AD,

AGFD,

∴∠EAG=DAG

∴∠BAF+DAG=EAF+EAG,

∵∠BAF+DAG+EAF+EAG=BAD=90°

∴∠BAF+DAG=GAF=45°,

∴∠DAG=45°-,

∴∠ADF=90°-DAG=45°+.

2)由(1)得∠GAF=45°

AGFD,

∴∠AFG=45°,

∵點EB關(guān)于直線AF對稱,

∴∠AFB=AFE=45°

∴∠BFG=90°,

BFDF.

3)連接BD、BE,過點CCH//FD,交BE延長線于H

∵∠BFD=BCD=90°,

B、FC、D四點共圓,

∴∠FDC=FBC,∠DFC=DBC=45°

CH//FD,

∴∠DCH=FDC,

∴∠FBC=DCH

∵∠ABC=BCD=90°,

∴∠ABC+FBC=BCD+DCH,即∠ABF=BCH,

∵點E、B關(guān)于直線AF對稱,

BF=EF,

∵∠BFE=90°

∴△BEF是等腰直角三角形,

∴∠BEF=45°BE=BF,

∴∠BEF=DFC

FC//BH,

∴四邊形EFCH是平行四邊形,

EH=FC,CH=BF

在△ABF和△BCH中,,

AF=BH=BE+EH=BF+CF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年春節(jié)前夕新型冠狀病毒爆發(fā),國家教育部要求各地延期開學(xué),并要求:利用網(wǎng)絡(luò)平臺,停課不停學(xué).為響應(yīng)號召,某校師生根據(jù)上級要求積極開展網(wǎng)絡(luò)授課教學(xué),八年級為了解學(xué)生網(wǎng)課發(fā)言情況,隨機抽取該年級部分學(xué)生,對他們某天在網(wǎng)課上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為52,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

1)求出樣本容量,并補全直方圖,在扇形統(tǒng)計圖中,“B”所對應(yīng)的圓心角的度數(shù)是

2)該年級共有學(xué)生500人,估計全年級在這天里發(fā)言次數(shù)不少于12的人數(shù)為 ;

3)該校八年級組織一次網(wǎng)絡(luò)授課經(jīng)驗專項視頻會議,A組的中恰有1位女生,E組的中有位2男生.現(xiàn)從A組與E組中分別抽一位寫報告,利用樹狀圖或列表法求出正好選中一男一女的概率.

n

A

B

C

D

E

F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O

1)作B的平分線與O交于點D(用尺規(guī)作圖不用寫作法,但要保留作圖痕跡);

2)在(1)中,連接AD,BAC=60°,C=66°,DAC的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年,一場突然而來的新型冠狀病毒肺炎疫情阻擋了學(xué)生們開學(xué)的腳步,多地學(xué)校進行了“戰(zhàn)役在家,線上課堂”活動,保證學(xué)生離校不離學(xué),為減少初中生被網(wǎng)絡(luò)詐騙的案件,因此要求學(xué)生掌握防詐騙知識并進行網(wǎng)絡(luò)測評.為了解某校學(xué)生的測試情況,從中隨機抽取部分學(xué)生的成績進行統(tǒng)計,并把測試成績分為ABCD四個等次,繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:

1a= ,b= ,c= ;

2)請將條形統(tǒng)計圖補充完整,并計算表示C等次的扇形所對的圓心角的度數(shù);

3)學(xué)校決定從A等次的甲、乙、丙、丁四名學(xué)生中,隨機選取兩名學(xué)生參加全市中學(xué)生防網(wǎng)絡(luò)詐騙知識競賽,請用列表法或畫樹狀圖法,求甲、乙兩名學(xué)生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場甲、乙、丙三名業(yè)務(wù)員5個月的銷售額(單位:萬元)如下表:

則甲、乙、丙三名業(yè)務(wù)員中銷售額最穩(wěn)定的是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對角線長分別為的菱形如圖所示,點為對角線的交點.過點折疊菱形,使兩點重合,是折痕,若,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形中,相交于,平分,,則的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC⊥AB,OAC的中點,經(jīng)過點O的直線交ADE,交BCF,連結(jié)AF、CE,現(xiàn)在添加一個適當(dāng)?shù)臈l件,使四邊形AFCE是菱形,下列條件:①OE=OA;②EF⊥AC;③AF平分∠BAC;④EAD中點.正確的有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點Ay軸上一點,其坐標為(0,6),點Bx軸的正半軸上.點P,Q均在線段AB上,點P的橫坐標為m,點Q的橫坐標大于m,在△PQM中,若PMx軸,QMy軸,則稱△PQM為點P,Q肩三角形.

1)若點B坐標為(4,0),且m2,則點P,B肩三角形的面積為   ;

2)當(dāng)點PQ肩三角形是等腰三角形時,求點B的坐標;

3)在(2)的條件下,作過OP,B三點的拋物線yax2+bx+c

①若M點必為拋物線上一點,求點P,Q肩三角形面積Sm之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.

當(dāng)點PQ肩三角形面積為3,且拋物線yax2+bx+c與點PQ肩三角形恰有兩個交點時,直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案