【題目】如圖,某沿海城市A接到臺(tái)風(fēng)警報(bào),在該市正南方向千米有一臺(tái)風(fēng)中心正在B處形成,并沿著北偏東45°的BC方向以15千米/小時(shí)的速度向C移動(dòng),AD⊥BC于D,如果在距臺(tái)風(fēng)中心150千米的區(qū)域內(nèi)都將受到臺(tái)風(fēng)的影響,請(qǐng)問(wèn):
(1)通過(guò)計(jì)算說(shuō)明,臺(tái)風(fēng)會(huì)否影響到A市?
(2)畫(huà)圖計(jì)算說(shuō)明,臺(tái)風(fēng)中心從B處出發(fā)后,經(jīng)過(guò)幾小時(shí)會(huì)影響到A市,對(duì)A市持續(xù)影響的時(shí)間有多少小時(shí)?在第幾小時(shí)時(shí)對(duì)A市的影響最大?
【答案】(1)受到臺(tái)風(fēng)影響,見(jiàn)解析(2)12小時(shí),第8小時(shí).
【解析】
試題(1)在Rt△ABD中,利用勾股定理直接得出AD的長(zhǎng)比較即可;(2)利用勾股定理分別得出BE,DE,DF的長(zhǎng)進(jìn)而分別得出答案.
試題解析:解:(1)在Rt△ABD中,∠B=∠A=45°,則AD=BD,∵,∴AD=BD=120km<150km,∴A市會(huì)受到臺(tái)風(fēng)影響;
(2)在BC上取兩點(diǎn)E,F,使AE=AF=150km,在Rt△ADE中, DE=90(km),同理可得:DF=90km, BE=BD-ED=120-90=30(km),∴,,
答:經(jīng)過(guò)2小時(shí)會(huì)影響到A市,對(duì)A市持續(xù)影響的時(shí)間有12小時(shí),在第8小時(shí)時(shí)對(duì)A市的影響最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上A,B,C三個(gè)點(diǎn)對(duì)應(yīng)的數(shù)分別為a,b,x,且A,B到﹣1所對(duì)應(yīng)的點(diǎn)的距離都等于7,點(diǎn)B在點(diǎn)A的右側(cè),
(1)請(qǐng)?jiān)跀?shù)軸上表示點(diǎn)A,B位置,a= ,b= ;
(2)請(qǐng)用含x的代數(shù)式表示CB= ;
(3)若點(diǎn)C在點(diǎn)B的左側(cè),且CB=8,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)AC=2AB且點(diǎn)A在B的左側(cè)時(shí),求點(diǎn)A移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:善于思考的小明在解方程組時(shí),采用了一種“整體代換”的解法,解法如下:
解:將方程②8x+20y+2y=10,變形為2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則y=-1;把y=-1代入①得,x=4,所以方程組的解為:.
請(qǐng)你解決以下問(wèn)題:
(1)試用小明的“整體代換”的方法解方程組
(2)已知x、y、z,滿足試求z的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=2,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處.當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把長(zhǎng)方形紙片OABC放入直角坐標(biāo)系中,使OA, OC分別落在x軸、y軸的正半軸上,連接AC,將翻折,點(diǎn)B落在該坐標(biāo)平面內(nèi),設(shè)這個(gè)落點(diǎn)為D,CD交x軸于點(diǎn)E,已知CB=8,AB=4.
(1)求AC所在直線的函數(shù)關(guān)系式;
(2)求點(diǎn)E的坐標(biāo)和的面積:
(3)求點(diǎn)D的坐標(biāo),并判斷點(diǎn)(8, -4)是否在直線OD上,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一點(diǎn)A(4,-1),將點(diǎn)A向左平移5個(gè)單位再向上平移5個(gè)單位得到點(diǎn)B,直線過(guò)點(diǎn)A、B,交x軸于點(diǎn)C,交y軸于點(diǎn)D, P是直線上的一個(gè)動(dòng)點(diǎn),通過(guò)研究發(fā)現(xiàn)直線上所有點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y 都是二元一次方程x+y=3的解.
①直接寫(xiě)出點(diǎn)B,C,D的坐標(biāo);B_______, C_________, D________
②求
③當(dāng)時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,ABCD,延長(zhǎng)邊AB到點(diǎn)E,使BE=AB,連接DE、BD和EC,設(shè)DE交BC于點(diǎn)O,∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com