將圖形中的△ABC分別作下列移動,畫出相應的圖形,指出三個頂點的坐標所發(fā)生的變化.

(1)向上平移4個單位;

(2)關于y軸成軸對稱;

(3)以A點為位似中心,放大到2倍.

答案:
解析:

  答案:如圖,(1)平移后得△A1B1C1,橫坐標不變,縱坐標都加4.

  (2)△ABC關于y軸對稱的圖形為△A2B2C2,縱坐標不變,橫坐標為對應點橫坐標的相反數(shù).

  (3)放大后得△AB2C3,A的坐標當然不變,B2在B的基礎上縱坐標不變,橫坐標加AB的長,C3的橫坐標加AB的長,縱坐標加BC的長.

  剖析:(1)向上平移4個單位,則是沿y軸的正方向平移4個單位,則橫坐標不變,而縱坐標應該加4.

  (2)一個圖形關于y軸對稱,則縱坐標不變,發(fā)生變化的是橫坐標,變?yōu)閷c橫坐標的相反數(shù).

  (3)以A點為位似中心,放大到2倍,則放大后的圖形,A點的坐標不變,而B,C的對應點的坐標則發(fā)生變化,相當于是AB、BC的長度擴大2倍來確定點的坐標.


提示:

圖形在平面直角坐標系中移動,則坐標會發(fā)生一定的變化,要注意哪些變,哪些不變.作位似變化時,只要求表示出頂點坐標即可,其他不作太高的要求.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(如圖1),點P將線段AB分成一條較小線段AP和一條較大線段BP,如果
AP
BP
=
BP
AB
,那么稱點P為線段AB的黃金分割點,設
AP
BP
=
BP
AB
=k,則k就是黃金比,并且k≈0.618.
精英家教網(wǎng)
(1)以圖1中的AP為底,BP為腰得到等腰△APB(如圖2),等腰△APB即為黃金三角形,黃金三角形的定義為:滿足
=
底+腰
≈0.618的等腰三角形是黃金三角形;類似地,請你給出黃金矩形的定義:
 
;
(2)如圖1,設AB=1,請你說明為什么k約為0.618;
(3)由線段的黃金分割點聯(lián)想到圖形的“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成面積為S1和面積為S2的兩部分(設S1<S2),如果
S1
S2
=
S2
S
,那么稱直線l為該圖形的黃金分割線.(如圖3),點P是線段AB的黃金分割點,那么直線CP是△ABC的黃金分割線嗎?請說明理由;
(4)圖3中的△ABC的黃金分割線有幾條?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖1,若將△AOB繞點O逆時針旋轉(zhuǎn)180°得到△COD,則△AOB≌△COD.此時,我們稱△AOB與△COD為“8字全等型”.借助“8字全等型”我們可以解決一些圖形的分割與拼接問題.例如:圖2中,△ABC是銳角三角形且AC>AB,點E為AC中點,F(xiàn)為BC上一點且BF≠FC(F不與B,C重合),沿EF將其剪開,得到的兩塊圖形恰能拼成一個梯形.
請分別按下列要求用直線將圖2中的△ABC重新進行分割,畫出分割線及拼接后的圖形.
(1)在圖3中將△ABC沿分割線剪開,使得到的兩塊圖形恰能拼成一個平行四邊形;
(2)在圖4中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的兩塊為直角三角形;
(3)在圖5中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的一塊為鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,若將△AOB繞點O逆時針旋轉(zhuǎn)180°得到△COD,則△AOB≌△COD.此時,我們稱△AOB與△COD為“8字全等型”.借助“8字全等型”我們可以解決一些圖形的分割與拼接問題.例如:圖2中,△ABC是銳角三角形且ACAB,點EAC中點,FBC上一點且BFFCF不與B、C重合),沿EF將其剪開,得到的兩塊圖形恰能拼成一個梯形.

請分別按下列要求用直線將圖2中的△ABC重新進行分割,畫出分割線及拼接后的圖形.

【小題1】(1)在圖3中將△ABC沿分割線剪開,使得到的兩塊圖形恰能拼成一個平行四邊形;
【小題2】(2在圖4中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的兩塊為直角三角形;
【小題3】(3在圖5中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的一塊為銳角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市延慶縣九年級上學期期末考試數(shù)學卷 題型:解答題

如圖1,若將△AOB繞點O逆時針旋轉(zhuǎn)180°得到△COD,則△AOB≌△COD.此時,我們稱△AOB與△COD為“8字全等型”.借助“8字全等型”我們可以解決一些圖形的分割與拼接問題.例如:圖2中,△ABC是銳角三角形且ACAB,點EAC中點,FBC上一點且BFFCF不與B、C重合),沿EF將其剪開,得到的兩塊圖形恰能拼成一個梯形.

請分別按下列要求用直線將圖2中的△ABC重新進行分割,畫出分割線及拼接后的圖形.

【小題1】(1)在圖3中將△ABC沿分割線剪開,使得到的兩塊圖形恰能拼成一個平行四邊形;
【小題2】(2在圖4中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的兩塊為直角三角形;
【小題3】(3在圖5中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的一塊為銳角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市延慶縣九年級上學期期末考試數(shù)學卷 題型:解答題

 如圖1,若將△AOB繞點O逆時針旋轉(zhuǎn)180°得到△COD,則△AOB≌△COD.此時,我們稱△AOB與△COD為“8字全等型”.借助“8字全等型”我們可以解決一些圖形的分割與拼接問題.例如:圖2中,△ABC是銳角三角形且ACAB,點EAC中點,FBC上一點且BFFCF不與B、C重合),沿EF將其剪開,得到的兩塊圖形恰能拼成一個梯形.

請分別按下列要求用直線將圖2中的△ABC重新進行分割,畫出分割線及拼接后的圖形.

 1.(1)在圖3中將△ABC沿分割線剪開,使得到的兩塊圖形恰能拼成一個平行四邊形;

2.(2在圖4中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的兩塊為直角三角形;

3.(3在圖5中將△ABC沿分割線剪開,使得到的三塊圖形恰能拼成一個矩形,且其中的一塊為銳角三角形.

 

查看答案和解析>>

同步練習冊答案