【題目】在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與射線CF相交于點(diǎn)G.
(1)若點(diǎn)D在線段BC上,如圖1.

①依題意補(bǔ)全圖1;
②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(2)若點(diǎn)D在線段BC的延長線上,且G為CF中點(diǎn),連接GE,AB= ,則GE的長為 ,并簡述求GE長的思路.

【答案】
(1)

證明:①依題意補(bǔ)全圖形,如圖1所示,

②BC⊥CG,BC=CG;

∵∠BAC=90°,AB=AC,

∴∠ABC=∠ACB=45°,

∵四邊形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAC=∠BAD+∠DAC=90°,

∠DAF=∠CAF+∠DAC=90°,

∴∠BAD=∠CAF,

在△BAD和△CAF中,

∴△BAD≌△CAF(SAS),

∴∠ACF=∠ABD=45°,

∴∠ACF+∠ACB=90°,

∴BC⊥CG;

∵點(diǎn)G是BA延長線上的點(diǎn),

BC=CG


(2)

如圖2,

∵∠BAC=90°,AB=AC,

∴∠ABC=∠ACB=45°,

∵四邊形ADEF是正方形,

∴AD=AF,∠DAF=90°,

∵∠BAC=∠BAD﹣∠DAC=90°,

∠DAF=∠CAF﹣∠DAC=90°,

∴∠BAD=∠CAF,

在△BAD和△CAF中,

∴△BAD≌△CAF(SAS),

∴∠ACF=∠ABD=45°,BD=CF,

∴∠ACF+∠ACB=90°,

∴BC⊥CF;

∵AB= ,BC=CD=CG=GF=2,

∴在Rt△AGH中,根據(jù)勾股定理得,AG= ,

∴在Rt△AGH中,根據(jù)勾股定理的,DG=2

∵AD= ,

∴AH= ,HG= ,

∴GI=AD﹣HG=

∴GE= =

故答案為


【解析】(1)①依題意補(bǔ)全圖形,如圖1所示,②判斷出△BAD≌△CAF即可;(2)先判斷出△BAD≌△CAF,得到BD=CF,BG⊥CF,得到直角三角形,利用勾股定理計(jì)算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料3600kg,乙種原料2410kg,計(jì)劃利用這兩種原料生產(chǎn)A,B兩種產(chǎn)品共500件,產(chǎn)品每月均能全部售出.已知生產(chǎn)一件A產(chǎn)品需要甲原料9kg和乙原料3kg;生產(chǎn)一件B種產(chǎn)品需甲種原料4kg和乙種原料8kg.

(1)設(shè)生產(chǎn)x件A種產(chǎn)品,寫出x應(yīng)滿足的不等式組.

(2)問一共有幾種符合要求的生產(chǎn)方案?并列舉出來.

(3)若有兩種銷售定價(jià)方案,第一種定價(jià)方案可使A產(chǎn)品每件獲得利潤1.15萬元,B產(chǎn)品每件獲得利潤1.25萬元;第二種定價(jià)方案可使A和B產(chǎn)品每件都獲得利潤1.2萬元;在上述生產(chǎn)方案中哪種定價(jià)方案盈利最多?(請用數(shù)據(jù)說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示一個(gè)質(zhì)點(diǎn)在第一象限內(nèi)及x軸、y軸上運(yùn)動(dòng),在第一秒內(nèi)它由原點(diǎn)移動(dòng)到(0,1)點(diǎn),而后接著按圖所示在x軸,y軸平行的方向運(yùn)動(dòng),且每秒移動(dòng)一個(gè)單位長度,那么質(zhì)點(diǎn)運(yùn)動(dòng)到點(diǎn)(n,n)(n為正整數(shù))的位置時(shí),用代數(shù)式表示所用的時(shí)間為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)(﹣2)1﹣|﹣ |+(3.14﹣π)0+4cos45°
(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去學(xué)校食堂就餐,經(jīng)常會(huì)在一個(gè)買菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學(xué)的舒適度指數(shù)y與等時(shí)間x(分)之間滿足反比例函數(shù)關(guān)系,如下表:

等待時(shí)間x

1

2

5

10

20

舒適度指數(shù)y

100

50

20

10

5

已知學(xué)生等待時(shí)間不超過30分鐘
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若等待時(shí)間8分鐘時(shí),求舒適度的值;
(3)舒適度指數(shù)不低于10時(shí),同學(xué)才會(huì)感到舒適.請說明,作為食堂的管理員,讓每個(gè)在窗口買菜的同學(xué)最多等待多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分別交CE、AE于點(diǎn)G、H.試猜測線段AE和BD的位置和數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x1、x2是一元二次方程x2+4x﹣3=0的兩個(gè)根,2x1(x22+5x2﹣3)+a=2,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點(diǎn)處有一休息亭,測得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片ABCD中,AB6 cm,BC8 cm,點(diǎn)EBC邊上一點(diǎn),連接AE,并將AEB沿AE折疊,得到AEB′,以C,E,B′為頂點(diǎn)的三角形是直角三角形時(shí),BE的長為____cm.

查看答案和解析>>

同步練習(xí)冊答案