如圖,PA、PB是⊙O的兩條切線,切點是A、B,如果OP=2,PA=,那么∠AOB的度數(shù)是( )
A.90°
B.100°
C.110°
D.120°
【答案】分析:由切線長定理知△APO≌△BPO,得∠AOP=∠BOP.可求得sin∠AOP=:2,所以可知∠AOP=60°,從而求得∠AOB的值.
解答:解:∵PA、PB是⊙O的兩條切線,切點是A、B,
∴PA=PB,∠PAO=∠PBO=90°,
∴在Rt△APO與Rt△BPO中,,
∴Rt△APO≌Rt△BPO(HL),
∴∠AOP=∠BOP.
∵sin∠AOP=AP:OP=2:4=:2,
∴∠AOP=60°.
∴∠AOB=2∠AOP=120°.
故選D.
點評:本題考查了切線的性質(zhì).解題時,要熟記特殊角的三角函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點分別為A,B,且∠APB=50°,點C是優(yōu)弧
AB
上的一點,則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點分別是A、B,點C是⊙O上異與點A、B的點,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習(xí)冊答案