如圖,四邊形OABC為直角梯形,OA=10,OC=3,BC=6.動點P、Q分別從C、A兩點同時出發(fā),點P以每秒1個單位的速度由C向B運動,點Q以每秒2個單位的速度由A向O運動,當(dāng)點Q停止運動時,點P也停止運動,設(shè)運動時間為t(0≤t≤5),
(1)當(dāng)t為多少時,四邊形PQAB是平行四邊形?
(2)當(dāng)t為多少時,四邊形PQAB是等腰梯形?
分析:(1)由題意可得CP=t,AQ=2t,BP=BC-CP=6-t,又由當(dāng)BP=AQ時,四邊形PQAB是平行四邊形,可得方程6-t=2t,解此方程即可求得t的值;
(2)由當(dāng)PQ=AB,PB≠AQ時,四邊形PQAB是等腰梯形,可得方程:4+6-t+4=2t,解此方程即可求得t的值.
解答:解:∵四邊形OABC為直角梯形,OA=10,OC=3,BC=6,點P以每秒1個單位的速度由C向B運動,點Q以每秒2個單位的速度由A向O運動,
∴CP=t,AQ=2t,
∴BP=BC-CP=6-t,
(1)∵四邊形OABC為直角梯形,
∴BC∥OA,
∴當(dāng)BP=AQ時,四邊形PQAB是平行四邊形,
即6-t=2t,
即t=2,
故當(dāng)t為2時,四邊形PQAB是平行四邊形;

(2)過點P作PE⊥OA于點E,過點B作BF⊥OA于點F,
∵OA∥BC,
∴四邊形PBFE是矩形,四邊形OCBF是矩形,
∴EF=BP=6-t,PE=BF,OF=BC,
∴AF=OA-BC=10-6=4,
∵當(dāng)PQ=AB,PB≠AQ時,四邊形PQAB是等腰梯形,
在Rt△PQE和Rt△BAF中,
PE=BF
PQ=BA

∴Rt△PQE≌Rt△BAF(HL),
∴QE=AF=4,
∵QE+EF+AF=AQ,
∴4+6-t+4=2t,
解得:t=
14
3
,
故當(dāng)t為
14
3
時,四邊形PQAB是等腰梯形.
點評:此題考查了直角梯形的性質(zhì)、平行四邊形的性質(zhì)以及等腰梯形的性質(zhì).此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的正方形紙片.點O與坐標(biāo)原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標(biāo)為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標(biāo);
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當(dāng)點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標(biāo);
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標(biāo),若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標(biāo)為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是( 。
(1)直線OA的函數(shù)解析式為y=
4
3
x

(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標(biāo)為(S-5,4)
(4)若點P在線段BC上時,P點的坐標(biāo)為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案