【題目】如圖,四邊形ABCD、AEFG都是正方形,且∠BAE=45°,連接BE并延長(zhǎng)交DG于點(diǎn)H,若AB=4,AE=,則線段BH的長(zhǎng)是_____.
【答案】
【解析】
連結(jié)GE交AD于點(diǎn)N,連結(jié)DE,由于∠BAE=45°,AF與EG互相垂直平分,且AF在AD上,由可得到AN=GN=1,所以DN=4﹣1=3,然后根據(jù)勾股定理可計(jì)算出,則,解著利用計(jì)算出HE,所以BH=BE+HE.
解:連結(jié)GE交AD于點(diǎn)N,連結(jié)DE,如圖,
∵∠BAE=45°,
∴AF與EG互相垂直平分,且AF在AD上,
∵,
∴AN=GN=1,
∴DN=4﹣1=3,
在Rt△DNG中,;
由題意可得:△ABE相當(dāng)于逆時(shí)針旋轉(zhuǎn)90°得到△AGD,
∴,
∵,
∴,
∴.
故答案是:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某植物園有一塊足夠大的空地,其中有一堵長(zhǎng)為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開(kāi).小俊設(shè)計(jì)了如圖甲和乙的兩種方案:
方案甲中AD的長(zhǎng)不超過(guò)墻長(zhǎng);方案乙中AD的長(zhǎng)大于墻長(zhǎng).
(1)若a=6.
①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長(zhǎng)是多少米?
②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?
(2)若0<a<6.5,哪種方案能圍成面積最大的矩形花圃?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店準(zhǔn)備購(gòu)進(jìn)兩種商品,種商品毎件的進(jìn)價(jià)比種商品每件的進(jìn)價(jià)多20元,用3000元購(gòu)進(jìn)種商品和用1800元購(gòu)進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價(jià)定為80元,種商品每件的售價(jià)定為45元.
(1)種商品每件的進(jìn)價(jià)和種商品每件的進(jìn)價(jià)各是多少元?
(2)商店計(jì)劃用不超過(guò)1560元的資金購(gòu)進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進(jìn)貨方案?
(3)端午節(jié)期間,商店開(kāi)展優(yōu)惠促銷活動(dòng),決定對(duì)每件種商品售價(jià)優(yōu)惠()元,種商品售價(jià)不變,在(2)條件下,請(qǐng)?jiān)O(shè)計(jì)出銷售這40件商品獲得總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象為直線l1,經(jīng)過(guò)A(0,4)和D(4,0)兩點(diǎn);一次函數(shù)y=x+1的圖象為直線l2,與x軸交于點(diǎn)C;兩直線l1,l2相交于點(diǎn)B.
(1)求k、b的值;
(2)求點(diǎn)B的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把對(duì)角線互相垂直的四邊形叫做垂直四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD,CB=CD,問(wèn)四邊形ABCD是垂直四邊形嗎?請(qǐng)說(shuō)明理由;
(2)如圖2,四邊形ABCD是垂直四邊形,求證:AD2+BC2=AB2+CD2;
(3)如圖3,Rt△ABC中,∠ACB=90°,分別以AC、AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,BC=3,求GE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年是五四運(yùn)動(dòng)100周年,也是中華人民共和國(guó)成立70周年,為緬懷五四先驅(qū)崇高的愛(ài)國(guó)情懷和革命精神,巴蜀中學(xué)開(kāi)展了“青春心向黨,建功新時(shí)代”為主題的系列紀(jì)念活動(dòng).歷史教研組也組織了近代史知識(shí)競(jìng)賽,七、八年級(jí)各有300名學(xué)生參加競(jìng)賽.為了解這兩個(gè)年級(jí)參加競(jìng)賽學(xué)生的成績(jī)情況,從中各隨機(jī)抽取20名學(xué)生的成績(jī),并對(duì)數(shù)據(jù)進(jìn)行了整理和分析(成績(jī)得分用表示,數(shù)據(jù)分為6組;;;;;)
繪制了如下統(tǒng)計(jì)圖表:
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 極差 |
七年級(jí) | 85.8 | 26 | ||
八年級(jí) | 86.2 | 86.5 | 87 | 18 |
七年級(jí)測(cè)試成績(jī)?cè)?/span>、兩組的是:81 83 83 83 83 86 87 88 88 89 89
根據(jù)以上信息,解答下列問(wèn)題
(1)上表中_______,_______.
(2)記成績(jī)90分及90分以上為優(yōu)秀,則估計(jì)七年級(jí)參加此次知識(shí)競(jìng)賽成績(jī)?yōu)閮?yōu)秀的學(xué)生有多少名?
(3)此次競(jìng)賽中,七、八兩個(gè)年級(jí)學(xué)生近代史知識(shí)掌握更好的是________(填“七”或“八“)年級(jí),并說(shuō)明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB為銳角,在射線OA上依次截取A1A2=A2A3=A3A4=…=AnAn+1,在射線OB上依次截取B1B2=B2B3=B3B4=…=BnBn+1,記Sn為△AnBnBn+1的面積(n為正整數(shù)),若S3=7,S4=10,則S2019=( )
A.4039B.4041C.6055D.6058
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com