如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于A、B兩點,點A的坐標是(0,4),M是圓上一點,∠BMO精英家教網(wǎng)=120°,求⊙C的半徑和圓心C的坐標.
分析:(1)由于∠AOB=90°,那么應連接AB,得到AB是直徑.由∠BMO=120°可得到∠BAO=60°,易得OA=4,利用60°的三角函數(shù),即可求得AB,進而求得半徑.
(2)利用勾股定理可得OB長,作出OB的弦心距,利用勾股定理可得到C的橫坐標的絕對值,同法可得到點C的橫坐標.
解答:精英家教網(wǎng)解:(1)連接AB,AM,則由∠AOB=90°,故AB是直徑,
由∠BAM+∠OAM=∠BOM+∠OBM=180°-120°=60°,
得∠BAO=60°,
又AO=4,故cos∠BAO=
AO
AB
,AB=
4
cos60°
=8,
從而⊙C的半徑為4.

(2)由(1)得,BO=
82-42
=4
3
,
過C作CE⊥OA于E,CF⊥OB于F,
則EC=OF=
1
2
BO=
1
2
×4
3
=2
3
,CF=OE=
1
2
OA=2.
故C點坐標為(-2
3
,2).
點評:本題用到的知識點為:90°的圓周角所對的弦是直徑;圓內(nèi)接四邊形的對角互補.連接90°所對的弦,做弦心距是常用的輔助線方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A與點B,點A的坐標為(0,4),M是圓上一點,∠BMO=120°.⊙C的半徑和圓心C的坐標分別是
 
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A與點B,點A的坐標為(0,4),M是圓上一點,∠BMO=120°,圓心C的坐標是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A和點B,點A的坐標為(0,2),點B的坐標為(2
3
,0),解答下列各題:
(1)求線段AB的長;
(2)求⊙C的半徑及圓心C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙C經(jīng)過原點且與兩坐標軸分別交于點A(0,2)和點B,D為⊙C在第一象限內(nèi)的一點,且∠ODB=60°,求⊙C的半徑、線段AB的長、B點坐標及圓心C的坐標.

查看答案和解析>>

同步練習冊答案