如圖,ΔABC中,AB=AC=14cm,AB的垂直平分線MN交AC于D,ΔDBC的周長是24cm,則BC=               cm..

 

【答案】

10

【解析】

試題分析:由MN是AB的垂直平分線可得AD=BD,于是將△BCD的周長轉(zhuǎn)化為BC與邊長AC的和來解答.

,

∴BD+DC+BC=24cm,

∵M(jìn)N垂直平分AB,

∴AD=BD,

∴AD+DC+BC=24cm,

即AC+BC=24cm,

又∵AC=14cm,

∴BC=24-14=10cm.

考點(diǎn):本題考查了垂直平分線的性質(zhì)

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握垂直平分線的性質(zhì):垂直平分線上的點(diǎn)到線段兩端的距離相等。此題將垂直平分線的性質(zhì)與三角形的周長問題相結(jié)合,體現(xiàn)了轉(zhuǎn)化思想在解題時的巨大作用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案