【題目】如圖,已知△ABC為等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
(1)求證:△ABE≌△CAD;
(2)求∠BFD的度數(shù).

【答案】
(1)證明:∵△ABC為等邊三角形,

∴∠BAE=∠C=60°,AB=CA,

在△ABE和△CAD中,

,

∴△ABE≌△CAD(SAS)


(2)解:∵∠BFD=∠ABE+∠BAD,

又∵△ABE≌△CAD,

∴∠ABE=∠CAD.

∴∠BFD=∠CAD+∠BAD=∠BAC=60°


【解析】(1)根據(jù)等邊三角形的性質(zhì)可知∠BAC=∠C=60°,AB=CA,結(jié)合AE=CD,可證明△ABE≌△CAD(SAS);(2)根據(jù)∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若五條線段的長(zhǎng)分別是1cm,2cm,3cm,4cm,5cm,則以其中三條線段為邊可構(gòu)成______個(gè)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是( )

A. 對(duì)角線相等的四邊形是矩形

B. 對(duì)角線互相垂直平分的四邊形是菱形

C. 一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形

D. 一組鄰邊相等,并且有一個(gè)內(nèi)角為直角的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點(diǎn)在格點(diǎn)上.

(1)作出△ABC關(guān)于x軸對(duì)稱的△A1B1C1 , 并寫(xiě)出點(diǎn)C1的坐標(biāo);
(2)作出△ABC關(guān)于y對(duì)稱的△A2B2C2 , 并寫(xiě)出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】投擲一枚普通的正方體骰子24次。
(1)你認(rèn)為下列四種說(shuō)法哪種是正確的?①出現(xiàn)1點(diǎn)的概率等于出現(xiàn)3點(diǎn)的概率;
②投擲24次,2點(diǎn)一定會(huì)出現(xiàn)4次;
③投擲前默念幾次“出現(xiàn)4點(diǎn)”,投擲結(jié)果出現(xiàn)4點(diǎn)的可能性就會(huì)加大;
④連續(xù)投擲6次,出現(xiàn)的點(diǎn)數(shù)之和不可能等于37。
(2)求出現(xiàn)5點(diǎn)的概率;
(3)出現(xiàn)6點(diǎn)大約有多少次?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=13cm,AC=20cm,BC邊上的高為12cm,則△ABC的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a、b為實(shí)數(shù),在數(shù)軸上的位置如圖,求|a﹣b|+ 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一組實(shí)數(shù), , , 1+ , ,
(1)將它們分類,填在相應(yīng)的括號(hào)內(nèi):
有理數(shù){ … };
無(wú)理數(shù){ …};
(2)請(qǐng)你選出2個(gè)有理數(shù)和2個(gè)無(wú)理數(shù), 再用 “+,-,×,÷” 中的3種不同的運(yùn)算符號(hào)將選出的4個(gè)數(shù)進(jìn)行運(yùn)算(可以用括號(hào)), 使得運(yùn)算的結(jié)果是一個(gè)正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上距離原點(diǎn)上的距離是2個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是( )
A.2
B.2或-2
C.-2
D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案