已知二次函數(shù)的圖象以為頂點,且過點.
(1)求該二次函數(shù)的解析式;
(2)求該二次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo);
(1);(2)與y軸交點(0,3),與x軸交點(-3,0)、(1,0).
解析試題分析:(1)將A(-2,5),B(1,-4)代入y=x2+bx+c,用待定系數(shù)法即可求得二次函數(shù)的解析式;
(2)分別把x=0,y=0,代入二次函數(shù)的解析式,求出對應(yīng)的y值與x的值,進(jìn)而得出此二次函數(shù)與坐標(biāo)軸的交點坐標(biāo);
試題解析:(1)設(shè)拋物線頂點式y(tǒng)=a(x+1)2+4,
將B(2,-5)代入得:a=-1,
∴該函數(shù)的解析式為:y=-(x+1)2+4=-x2-2x+3,
(2)令x=0,得y=3,因此拋物線與y軸的交點為:(0,3),
令y=0,-x2-2x+3=0,解得:x1=-3,x2=1,即拋物線與x軸的交點為:(-3,0),(1,0).
考點:1.用待定系數(shù)法求拋物線解析式;2.函數(shù)圖象交點.
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=-x2-x.
(1)在給定的直角坐標(biāo)系中,畫出這個函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時,x的取值范圍;
(3)若將此圖象沿x軸向右平移3個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為了落實國務(wù)院的指示精神,地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)某品牌的護眼燈,并將護眼燈按質(zhì)量分成15個等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表表示:
等級(x級) | 一級 | 二級 | 三級 | … |
生產(chǎn)量(y臺/天) | 78 | 76 | 74 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
今年,6月12日為端午節(jié)。在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價為2元的粽子的銷售情況。請根據(jù)小麗提供的信息,解答小華和小明提出的問題。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù).
(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標(biāo);若P點不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
綜合與探究:如圖,拋物線與x軸交于A,B兩點(點B在點A的右側(cè))與y軸交于點C,連接BC,以BC為一邊,點O為對稱中心作菱形BDEC,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l交拋物線于點Q。
(1)求點A,B,C的坐標(biāo)。
(2)當(dāng)點P在線段OB上運動時,直線l分別交BD,BC于點M,N。試探究m為何值時,四邊形CQMD是平行四邊形,此時,請判斷四邊形CQBM的形狀,并說明理由。
(3)當(dāng)點P在線段EB上運動時,是否存在點 Q,使△BDQ為直角三角形,若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達(dá)點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設(shè)運動時間為t秒.
(1)當(dāng)t= 時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx﹣4經(jīng)過A(﹣8,0),B(2,0)兩點,直線x=﹣4交x軸于點C,交拋物線于點D.
(1)求該拋物線的解析式;
(2)點P在拋物線上,點E在直線x=﹣4上,若以A,O,E,P為頂點的四邊形是平行四邊形,求點P的坐標(biāo);
(3)若B,D,C三點到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使?若存在,請直接寫出d3的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com