【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數(shù)的解析式.
【答案】(1);(2).
【解析】
試題分析:(1)由點A的坐標結合反比例函數(shù)系數(shù)k的幾何意義,即可求出m的值;
(2)設點B的坐標為(n,),將一次函數(shù)解析式代入反比例函數(shù)解析式中,利用根與系數(shù)的關系可找出n、k的關系,由三角形的面積公式可表示出來b、n的關系,再由點A在一次函數(shù)圖象上,可找出k、b的關系,聯(lián)立3個等式為方程組,解方程組即可得出結論.
試題解析:(1)∵點A(4,1)在反比例函數(shù)的圖象上,∴m=4×1=4,∴反比例函數(shù)的解析式為.
(2)∵點B在反比例函數(shù)的圖象上,∴設點B的坐標為(n,).
將y=kx+b代入中,得:
kx+b=,整理得:,∴4n=,即nk=﹣1①.
令y=kx+b中x=0,則y=b,即點C的坐標為(0,b),∴S△BOC=bn=3,∴bn=6②.
∵點A(4,1)在一次函數(shù)y=kx+b的圖象上,∴1=4k+b③.
聯(lián)立①②③成方程組,即,解得:,∴該一次函數(shù)的解析式為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點O作EF∥AB交BC于F,交AC于E,過點O作OD⊥BC于D,下列四個結論:
①∠AOB=90°+ ∠C;
②AE+BF=EF;
③當∠C=90°時,E,F(xiàn)分別是AC,BC的中點;
④若OD=a,CE+CF=2b,則S△CEF=ab.
其中正確的是( )
A.①②
B.③④
C.①②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經過AO的中點C,且與AB相交于點D,OB=4,AD=3.
(1)求反比例函數(shù)的解析式;
(2)求cos∠OAB的值;
(3)求經過C、D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,反比例函數(shù)的圖象過點A(,2).
(1)求k的值;
(2)如圖,在反比例函數(shù)(x>0)上有一點C,過A點的直線l∥x軸,并與OC的延長線交于點B,且OC=2BC,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB為直徑,過點B的切線與AC的延長線交于點D,E是BD中點,連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=4,BC=2,求BD和CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A.坐標平面內的點與有序數(shù)對是一一對應的
B.在x軸上的點縱坐標為零
C.在y軸上的點橫坐標為零
D.平面直角坐標系把平面上的點分為四部分
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com