在一次數(shù)學興趣小組活動中,組長要求學生畫兩個正方形,所畫的正方形必須滿足小惠和明聰提出的兩個條件.
小惠說:“正方形甲的周長比正方形乙的周長長96cm.”
明聰說:“兩個正方形面積相差為960cm2.”
根據(jù)小惠和明聰提出的兩個條件,你能算出兩個正方形的邊長是多少嗎?
分析:本題有兩個等量關(guān)系:①正方形甲的周長-正方形乙的周長=96cm;②正方形甲的面積-正方形乙的面積=960cm2.如果設(shè)正方形甲與正方形乙的邊長分別為acm,bcm,那么根據(jù)以上兩個等量關(guān)系,結(jié)合正方形的周長與面積公式,可列出方程組,求出解.
解答:解:設(shè)正方形甲與正方形乙的邊長分別為acm,bcm.
依題意,得
4a-4b=96
a2-b2=960

解這個方程組,得
a=32
b=8

答:正方形甲與正方形乙的邊長分別為32cm,8cm.
點評:本題主要考查了正方形的周長與面積公式.對于應(yīng)用題,讀懂關(guān)鍵描述語,找到等量關(guān)系,準確地列出方程組是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•連云港)小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(
9
2
,
9
2
)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(江蘇連云港卷)數(shù)學(帶解析) 題型:解答題

小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=SABF.(S表示面積)

問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年江蘇省連云港市中考數(shù)學試卷(解析版) 題型:解答題

小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(,)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(江蘇連云港卷)數(shù)學(解析版) 題型:解答題

小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:

問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=S△ABF.(S表示面積)

問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)

拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

 

查看答案和解析>>

同步練習冊答案
闁稿骏鎷� 闂傚偊鎷�